References
- Choi, Y.G., Park, J.H., Woo, S.B., Jeong, Y.J. (2003), "Reinforcing effect of FRP multi-step grouting for NATM tunnel through weathered zone", KSCE 2003 convention program, pp. 4805-4810.
- Choi, H.J., Kim, S.G., Jang, K.J., Shim, J.D., Eun, S.J. (2005), "Case Study on Tunnel Design under Terminal Structure of Gimpo Airport", KSCE Tunnel Committee Special Conference, pp. 49-66.
- Cheng, C.Y., Dasari, G.R., Leung, C.F., Chow, Y.K., Rosser, H.B. (2004), "3D Numerical Study of Tunnel-Soil-Pile Interaction", Underground Space for Sustainable Urban Development. Proc. of. the 30th ITA-AITES World Tunnel Congress Singpore, pp. 1-8.
- Dias, T. G. S., Bezuijen, A. (2014), "Pile-tunnel interaction: A conceptual analysis", 8th International symposium on Geotechnical aspects of underground construction in soft ground, CRC Press, Vol. 1, pp. 251-255.
- Hartono, E., Leung, C.F., Shen, R.F., Chow, Y.K., Ng, Y.S., Tan, H.T., Hua, C.J. (2014), "Behaviour of pile above tunnel in clay", Physical Modelling in Geotechnics, pp. 833-838.
- Hong, Y., Soomro, M.A., Ng, C.W.W. (2015), "Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling", Computers and Geotechnics, pp.105-119.
- Jacobsz, S. W. (2002), "The effects of tunnelling on piled foundations", PhD thesis, University of Cambridge, pp. 1-348.
- Jue, K.S., Na, D.S. (2005). "A Study on the Construction of Tunnel near the Piles of Foundation of an Overpass", KSCE Tunnel Committee Special Conference, pp. 89-100.
- Jeon, Y.J., Lee, C.J. (2015), "A study on the behaviour of single piles to adjacent tunnelling in stiff clay", Journal of the Korean Geo-Environmental Society, Vol. 16, No. 6, pp. 13-22.
- Jeon, Y.J., Kim, S.H., Lee, C.J. (2015), "A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 637-652. https://doi.org/10.9711/KTAJ.2015.17.6.637
- Lee, C.J. (2012a), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunnel Underground Space Technolgy, Vol. 32, pp. 132-142. https://doi.org/10.1016/j.tust.2012.06.005
- Lee, C.J. (2012b), "Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 4, pp. 337-356. https://doi.org/10.9711/KTAJ.2012.14.4.337
- Lee, C.J. (2012c), "The response of a single pile and pile groups to tunnelling performed in weathered rock", Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5C, pp. 199-210. https://doi.org/10.12652/Ksce.2012.32.5C.199
- Lee, C.J., Jeon, Y.J. (2015), "A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 91-105. https://doi.org/10.9711/KTAJ.2015.17.2.091
- Lee, C.J., Jeon, Y.J., Kim, S.H., Park, I.J., (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomechanics and Engineering, Vol. 11, No. 4, pp. 553-570. https://doi.org/10.12989/gae.2016.11.4.553
- Lee, G. T. K., Ng, C. W. W. (2005), "The effects of advancing open face tunneling on an existing loaded pile", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 2, pp. 193-201. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(193)
- Liu, C., Zhang, Z., Regueiro, R.A. (2014), "Pile and pile group response to tunnelling using a large diameter slurry shield - Case study in Shanghai", Computers and Geotechnics, Vol. 59, pp. 21-43. https://doi.org/10.1016/j.compgeo.2014.03.006
- Lee, Y.J. (2008), "A boundary line between shear strain formations associated with tunneling adjacent to an existing piled foundation", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 3, pp. 283-293.
- Marshall, A.M. (2009), "Tunnelling in sand and its effect on pipelines and piles", PhD thesis, University of Cambridge.
- Midas GTS NX 3D (2016), "User manual", Midas GTS NX user manual, pp. 142-148.
- Mair, R.J., Williamson, M.G. (2014), "The influence of tunnelling and deep excavation on piled foundations", Geotechnical Aspects of Underground Construction in Soft Ground, pp. 21-30.
- Ng, C.W.W., Lu, H., Peng, S.Y. (2013), "Three-dimensional centrifuge modelling of twin tunnelling effects on an existing pile", Tunnelling and Underground Space Technology, Vol. 35, pp. 189-199. https://doi.org/10.1016/j.tust.2012.07.008
- Ng, C.W.W., Soomro, M.A., Hong, Y. (2014), "Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling", Tunnelling and Underground Space Technology, Vol. 43, pp. 350-361. https://doi.org/10.1016/j.tust.2014.05.002
- Pang, C.H. (2006), "The effects of tunnel construction on nearby pile foundation", PhD thesis, The National University of Singapore.
- Selemetas, D. (2005), "The response of full-scale piles and piled structures to tunnelling", PhD thesis, University of Cambridge, pp. 1-302.
- Williamson, M.G. (2014), "Tunnelling effects on bored piles in clay", PhD thesis, University of Cambridge UK.