DOI QR코드

DOI QR Code

A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling

터널근접시공에 의한 기 존재하는 인접말뚝의 거동에 지반보강이 미치는 영향에 대한 연구

  • Jeon, Young-Jin (Dept. of Civil Engineering, Kangwon National University) ;
  • Kim, Sung-Hee (Dept. of Civil Engineering, Kangwon National University) ;
  • Kim, Jeong-Sub (Dept. of Civil Engineering, Kangwon National University) ;
  • Lee, Cheol-Ju (Dept. of Civil Engineering, Kangwon National University)
  • Received : 2017.04.03
  • Accepted : 2017.05.11
  • Published : 2017.05.31

Abstract

In the current work, a series of three-dimensional finite element analysis was carried out to understand the behaviour of pile when the tunnel passes through the lower part of a single pile or group piles. At the current study, the numerical analysis analysed the results regarding the ground reinforcement condition between the tunnel and pile foundation. In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the total displacements near the tunnel have been thoroughly analysed. The pile head settlements of the single pile with the maximum level of reinforcement decreased by about 16% compared to the pile without ground reinforcement. Furthermore, the maximum axial force of the single pile with the maximum level of ground reinforcement experienced a 30% reduction compared to the pile without reinforcement. It has been found that the angle of ground reinforcement in the transverse direction affects the pile behaviour more so than the length of the ground reinforcement in the longitudinal direction. On the other hand, in the case of the pile group with the reinforced pile cap, the ground displacement near the pile tip appears to be similar to the corresponding ground displacement without reinforcement. However, it was found that the pile cap near the pile head greatly restrained the pile head movement and hence the axial pile force increased by about 2.5 times near the pile top compared to the piles in other analysis conditions. The behaviour of the single pile and group piles, depending on the amount of ground reinforcement, has been extensively examined and analysed by considering the key features in great details.

본 연구는 단독말뚝 또는 군말뚝 형태의 기초 하부를 터널이 근접통과할 경우 말뚝의 거동을 파악하기위해 3차원 유한요소해석을 수행하였다. 이때 터널과 말뚝기초 사이의 지반보강 조건별로 수치해석을 수행하여 결과를 분석하였다. 수치해석에서는 터널굴착으로 인해 유발된 말뚝침하, 축력, 전단응력 및 터널 주변지반의 전체변위를 고찰하였다. 단독말뚝의 두부침하는 지반보강의 범위가 가장 넓은 경우 지반보강을 고려하지 않은 말뚝에 비해 약 16% 감소하며, 말뚝의 최대 축력 또한 지반보강을 고려하지 않은 말뚝에 비해 약 30% 감소하는 것으로 분석되었다. 터널굴착에 따른 말뚝의 거동은 지반보강길이 (종방향 보강)보다는 보강각도(횡방향 보강)에 대해 더 크게 영향을 받는 것으로 분석되었다. 한편 오직 기초판 보강만을 실시한 군말뚝의 경우 선단부근 지반의 변위는 보강을 고려하지 않은 조건의 지반 변위와 비슷하게 나타났다. 이에 비해 말뚝두부에서는 기초판이 말뚝을 크게 구속하여 타 조건 말뚝의 경우에 비해 말뚝상부에서 축력이 약 2.5배 증가하는 것으로 분석되었다. 본 연구를 통해 보강조건에 따른 단독말뚝 및 군말뚝의 거동에 영향을 미치는 주요인자를 심도 있게 고찰하였다.

Keywords

References

  1. Choi, Y.G., Park, J.H., Woo, S.B., Jeong, Y.J. (2003), "Reinforcing effect of FRP multi-step grouting for NATM tunnel through weathered zone", KSCE 2003 convention program, pp. 4805-4810.
  2. Choi, H.J., Kim, S.G., Jang, K.J., Shim, J.D., Eun, S.J. (2005), "Case Study on Tunnel Design under Terminal Structure of Gimpo Airport", KSCE Tunnel Committee Special Conference, pp. 49-66.
  3. Cheng, C.Y., Dasari, G.R., Leung, C.F., Chow, Y.K., Rosser, H.B. (2004), "3D Numerical Study of Tunnel-Soil-Pile Interaction", Underground Space for Sustainable Urban Development. Proc. of. the 30th ITA-AITES World Tunnel Congress Singpore, pp. 1-8.
  4. Dias, T. G. S., Bezuijen, A. (2014), "Pile-tunnel interaction: A conceptual analysis", 8th International symposium on Geotechnical aspects of underground construction in soft ground, CRC Press, Vol. 1, pp. 251-255.
  5. Hartono, E., Leung, C.F., Shen, R.F., Chow, Y.K., Ng, Y.S., Tan, H.T., Hua, C.J. (2014), "Behaviour of pile above tunnel in clay", Physical Modelling in Geotechnics, pp. 833-838.
  6. Hong, Y., Soomro, M.A., Ng, C.W.W. (2015), "Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling", Computers and Geotechnics, pp.105-119.
  7. Jacobsz, S. W. (2002), "The effects of tunnelling on piled foundations", PhD thesis, University of Cambridge, pp. 1-348.
  8. Jue, K.S., Na, D.S. (2005). "A Study on the Construction of Tunnel near the Piles of Foundation of an Overpass", KSCE Tunnel Committee Special Conference, pp. 89-100.
  9. Jeon, Y.J., Lee, C.J. (2015), "A study on the behaviour of single piles to adjacent tunnelling in stiff clay", Journal of the Korean Geo-Environmental Society, Vol. 16, No. 6, pp. 13-22.
  10. Jeon, Y.J., Kim, S.H., Lee, C.J. (2015), "A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 637-652. https://doi.org/10.9711/KTAJ.2015.17.6.637
  11. Lee, C.J. (2012a), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunnel Underground Space Technolgy, Vol. 32, pp. 132-142. https://doi.org/10.1016/j.tust.2012.06.005
  12. Lee, C.J. (2012b), "Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 4, pp. 337-356. https://doi.org/10.9711/KTAJ.2012.14.4.337
  13. Lee, C.J. (2012c), "The response of a single pile and pile groups to tunnelling performed in weathered rock", Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5C, pp. 199-210. https://doi.org/10.12652/Ksce.2012.32.5C.199
  14. Lee, C.J., Jeon, Y.J. (2015), "A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 91-105. https://doi.org/10.9711/KTAJ.2015.17.2.091
  15. Lee, C.J., Jeon, Y.J., Kim, S.H., Park, I.J., (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomechanics and Engineering, Vol. 11, No. 4, pp. 553-570. https://doi.org/10.12989/gae.2016.11.4.553
  16. Lee, G. T. K., Ng, C. W. W. (2005), "The effects of advancing open face tunneling on an existing loaded pile", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 2, pp. 193-201. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(193)
  17. Liu, C., Zhang, Z., Regueiro, R.A. (2014), "Pile and pile group response to tunnelling using a large diameter slurry shield - Case study in Shanghai", Computers and Geotechnics, Vol. 59, pp. 21-43. https://doi.org/10.1016/j.compgeo.2014.03.006
  18. Lee, Y.J. (2008), "A boundary line between shear strain formations associated with tunneling adjacent to an existing piled foundation", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 3, pp. 283-293.
  19. Marshall, A.M. (2009), "Tunnelling in sand and its effect on pipelines and piles", PhD thesis, University of Cambridge.
  20. Midas GTS NX 3D (2016), "User manual", Midas GTS NX user manual, pp. 142-148.
  21. Mair, R.J., Williamson, M.G. (2014), "The influence of tunnelling and deep excavation on piled foundations", Geotechnical Aspects of Underground Construction in Soft Ground, pp. 21-30.
  22. Ng, C.W.W., Lu, H., Peng, S.Y. (2013), "Three-dimensional centrifuge modelling of twin tunnelling effects on an existing pile", Tunnelling and Underground Space Technology, Vol. 35, pp. 189-199. https://doi.org/10.1016/j.tust.2012.07.008
  23. Ng, C.W.W., Soomro, M.A., Hong, Y. (2014), "Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling", Tunnelling and Underground Space Technology, Vol. 43, pp. 350-361. https://doi.org/10.1016/j.tust.2014.05.002
  24. Pang, C.H. (2006), "The effects of tunnel construction on nearby pile foundation", PhD thesis, The National University of Singapore.
  25. Selemetas, D. (2005), "The response of full-scale piles and piled structures to tunnelling", PhD thesis, University of Cambridge, pp. 1-302.
  26. Williamson, M.G. (2014), "Tunnelling effects on bored piles in clay", PhD thesis, University of Cambridge UK.