DOI QR코드

DOI QR Code

Massive Fluid Simulation Using a Responsive Interaction Between Surface and Wave Foams

수면거품과 웨이브거품의 미세한 상호작용을 이용한 대규모 유체 시뮬레이션

  • Received : 2017.03.30
  • Accepted : 2017.05.30
  • Published : 2017.06.01

Abstract

This paper presents a unified framework to efficiently and realistically simulate surface and wave foams. The framework is designed to first project 3D water particles from an underlying water solver onto 2D screen space in order to reduce the computational complexity of determining where foam particles should be generated. Because foam effects are often created primarily in fast and complicated water flows, we analyze the acceleration and curvature values to identify the areas exhibiting such flow patterns. Foam particles are emitted from the identified areas in 3D space, and each foam particle is advected according to its type, which is classified on the basis of velocity, thereby capturing the essential characteristics of foam wave motions. We improve the realism of the resulting foam by classifying it into two types: surface foam and wave foam. Wave foam is characterized by the sharp wave patterns of torrential flow s, and surface foam is characterized by a cloudy foam shape even in water with reduced motion. Based on these features, we propose a technique to correct the velocity and position of a foam particle. In addition, we propose a kernel technique using the screen space density to efficiently reduce redundant foam particles, resulting in improved overall memory efficiency without loss of visual detail in terms of foam effects. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results.

본 논문에서는 효율적이고 사실적으로 수면거품과 웨이브거품을 표현할 수 있는 통합된 프레임워크를 제안한다. 이 프레임워크는 거품입자가 생성되어야 하는 곳을 결정할 때 발생하는 계산 복잡도를 줄이기 위해 3차원 공간의 물 입자들을 2차원 스크린 공간으로 투영하도록 설계되었다. 거품효과는 빠르고 복잡한 물의 흐름에서 생성되기 때문에, 가속도와 곡률 값을 분석하여 복잡한 유체의 흐름 패턴을 갖는 영역을 2차원에서 찾고 이를 3차공간으로 변환한다. 변환된 3차원 영역에서 거품입자가 방출되고, 각 거품입자는 속도가 따라 분류되며, 그 종류에 따라 다르게 이류됨으로써 웨이브거품의 본질적인 특징을 잘 포착해 낸다. 우리는 거품입자들을 두 가지 유형인 수면 거품과 웨이브거품으로 분류하여 결과적으로 거품의 사실감을 향상시킨다. 웨이브거품은 급류와 같은 부분에서 날카로운 웨이브패턴이 표현되는 특징이 있고, 수면거품은 느린 유속에서 뿌연 거품형태로 표현되는 특징이 있다. 이러한 특징을 표현하기 위해 거품입자의 속도와 위치를 올바르게 가이드해주는 기법을 제안한다. 또한 스크린공간의 밀도를 이용한 커널함수를 제안한다. 이 함수를 이용하여 거품입자의 속도와 위치를 올바르게 조정하여 불필요한 거품입자들을 효율적으로 제거하며, 결과적으로, 거품효과의 시각적인 손실없이 전반적인 메모리 효율성을 향상시켰다. 우리는 신빙성있는 실험결과를 보여주며 제안된 접근법은고품질의 결과를 제공하는 동시에 사용하기 쉽다는 장점이 있다.

Keywords

Acknowledgement

Supported by : 강남대학교

References

  1. M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, "Highquality surface splatting on today's gpus," in Second Eurographics/IEEE VGTC Conference on Point-Based Graphics, 2005, pp. 17-24.
  2. T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka, and H. Ueki, "Realistic animation of fluid with splash and foam," Computer Graphics Forum, vol. 22, no. 3, pp. 391-400, 2003. https://doi.org/10.1111/1467-8659.00686
  3. M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner, "Unified spray, foam and air bubbles for particle-based fluids," The Visual Computer, vol. 28, no. 6-8, pp. 669-677, 2012. https://doi.org/10.1007/s00371-012-0697-9
  4. C.-B. Wang, Q. Zhang, F.-L. Kong, and H. Qin, "Hybrid particle-grid fluid animation with enhanced details," The Visual Computer, vol. 29, no. 9, pp. 937-947, 2013. https://doi.org/10.1007/s00371-013-0849-6
  5. W. Geiger, M. Leo, N. Rasmussen, F. Losasso, and R. Fedkiw, "So real it'll make you wet," in ACM SIGGRAPH 2006 Sketches, 2006.
  6. F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw, "Twoway coupled sph and particle level set fluid simulation," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 4, pp. 797-804, 2008. https://doi.org/10.1109/TVCG.2008.37
  7. V. Mihalef, D. Metaxas, and M. Sussman, "Simulation of two-phase flow with sub-scale droplet and bubble effects," Computer Graphics Forum, vol. 28, no. 2, pp. 229-238, 2009. https://doi.org/10.1111/j.1467-8659.2009.01362.x
  8. W. A. Sirignano, Fluid dynamics and transport of droplets and sprays. Cambridge: Cambridge University Press, 1999.
  9. P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo, "Bubbling and frothing liquids," in ACM SIGGRAPH, 2007.
  10. M. B. Nielsen and O. Osterby, "A two-continua approach to Eulerian simulation of water spray," ACM Transactions on Graphics, vol. 32, no. 4, pp. 67:1-67:10, 2013.
  11. M. Muller, S. Schirm, and S. Duthaler, "Screen space meshes," in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2007, pp. 9-15.
  12. R. Fedkiw, J. Stam, and H. W. Jensen, "Visual simulation of smoke," in ACM Transactions on Graphics, 2001, pp. 15-22.
  13. J.-M. Hong, T. Shinar, and R. Fedkiw, "Wrinkled flames and cellular patterns," in ACM Transactions on Graphics, 2007.
  14. W. J. van der Laan, S. Green, and M. Sainz, "Screen space fluid rendering with curvature flow," in Symposium on Interactive 3D Graphics and Games, 2009, pp. 91-98.
  15. Y. Zhu and R. Bridson, "Animating sand as a fluid," in ACM SIGGRAPH, vol. 24, 2005, pp. 965-972.
  16. F. H. Harlow, "The particle-in-cell computing method for fluid dynamics," Methods in computational physics, vol. 3, no. 3, pp. 319-343, 1964.
  17. M. B. Nielsen and O. Osterby, "A two-continua approach to eulerian simulation of water spray," in ACM SIGGRAPH, vol. 32, no. 4, 2013, p. 67.