DOI QR코드

DOI QR Code

A 2.496 Gb/s Reference-less Dual Loop Clock and Data Recovery Circuit for MIPI M-PHY

2.496Gb/s MIPI M-PHY를 위한 기준 클록이 없는 이중 루프 클록 데이터 복원 회로

  • Kim, Yeong-Woong (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Jang, Young-Chan (School of Electronic Engineering, Kumoh National Institute of Technology)
  • Received : 2016.12.22
  • Accepted : 2017.01.26
  • Published : 2017.05.31

Abstract

This paper presents a reference-less dual loop clock and data recovery (CDR) circuit that supports a data rate of 2.496 Gb/s for the mobile industry processor interface (MIPI) M-PHY. An adaptive loop bandwidth scheme is used to implement the fast lock time maintaining a low time jitter. To this scheme, the proposed CDR consists of two loops for a frequency locked loop and a phase locked loop. The proposed 2.496 Gb/s reference-less dual loop CDR is designed using a 65 nm CMOS process with 1.2 V supply voltage. The simulated peak-to-peak jitter of output clock is 9.26 ps for the input data of 2.496 Gb/s pseudo-random binary sequence (PRBS) 15. The active area and power consumption of the implemented CDR are $470{\times}400{\mu}m^2$ and 6.49 mW, respectively.

본 논문은 2.496Gb/s 데이터 레이트를 갖는 mobile industry processor interface (MIPI) M-PHY를 위한 기준 클록이 없는 이중 루프 클록 데이터 복원 회로(CDR : Clock and Data Recovery Circuit)를 제안한다. 제안하는 클록 데이터 복원회로는 적응형 루프 대역폭 조절 기법을 사용하여 적은 타임 지터를 가지면서 빠른 고정 시간을 가질 수 있다. 클록 데이터 복원회로는 주파수 고정 루프와 위상 고정 루프로 이루어진다. 제안하는 2.496Gb/s 기준 클록이 없는 이중 루프 클록 데이터 복원 회로는 1.2V 공급 전압을 갖는 65nm CMOS 공정을 이용하여 설계되었다. 2.496Gb/s pseudo-random binary sequence (PRBS)15 입력에서 시뮬레이션 된 출력 클록의 타임 지터는 $9.26ps_{p-p}$이다. 클록 데이터 복원 회로의 면적과 전력 소모는 각각 $400{\times}470{\mu}m^2$와 6.49mW이다.

Keywords

References

  1. J.-K. Kim, J. Kim, G. Kim, and D.-K. Jeong, "A Fully Integrated $0.13-{\mu}m$ CMOS 40Gb/s Serial Link Transceiver," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1510-1521, May 2009. https://doi.org/10.1109/JSSC.2009.2017973
  2. K. Hu, T. Jiang, J. Wang, F. O'Mahony, and P. Y. Chiang, "A 0.6 mW/Gb/s, 6.4 - 7.2Gb/s Serial Link Receiver Using Local Injection-locked Ring Oscillators in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 899-908, Apr. 2010. https://doi.org/10.1109/JSSC.2010.2040116
  3. K.-L. J. Wong, H. Hatamkhani, M. Mansuri, and C.-K. K. Yang, "A 27-mW 3.6Gb/s I/O Transceiver," IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 602-612, Apr. 2004. https://doi.org/10.1109/JSSC.2004.825259
  4. S.-Y. Kim, J. Lee, H.-G. Park, Y. G. Pu, J. Y. Lee, and K.-Y. Lee, "A 1.248Gb/s - 2.918Gb/s Low-Power Receiver for MIPI-DigRF M-PHY with a Fast Settling Fully Digital Frequency Detection Loop in $0.11-{\mu}m$ CMOS," IEIE J. Semiconductor Technology and Science, vol. 15, no. 4, pp. 506-517, Aug. 2014.
  5. Y.-L. Lee, S.-J. Chang, R.-S. Chu, Y.-Z. Lin, Y.-C. Chen, G. J. Ren, and C.-M. Huang, "A 5Gb/s 1/4-rate Clock and Data Recovery Circuit Using Dynamic Stepwise Bangbang Phase Detector," in Proceeding of the IEEE Asian Solid-State Circuits Conference, pp. 141-144, 2012.
  6. T. Lee, Y.-H. Kim, J. Sim, J.-S. Park, and L.-S. Kim, "A 5Gb/s 2.67-mW/Gb/s Digital Clock and Data Recovery With Hybrid Dithering Using a Time-Dithered Delta- Sigma Modulator," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 4, pp. 1450-1459, Apr. 2015. https://doi.org/10.1109/TVLSI.2015.2449866
  7. G. Shu, W.-S. Choi, S. Saxena, T. Anand, A. Elshazly, and P. K. Hanumolu, "A 4-to-10.5Gb/s 2.2mW/Gb/s continuous-rate digital CDR with automatic frequency acquisition in 65nm CMOS," in Dig. Tech. Papers of IEEE Int. Solid-State Circuits Conference, pp. 150-151, 2014.
  8. S.-J. Song, S. M. Park, and H.-J. Yoo, "A 4Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique," IEEE J. Solid-State Circuits, vol. 38, pp. 1213- 1219, July 2003. https://doi.org/10.1109/JSSC.2003.813292
  9. J. Savoj and B. Razavi, "A 10Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector," IEEE J. Solid-State Circuits, vol. 36, pp. 761-767, May 2001. https://doi.org/10.1109/4.918913
  10. B. Razavi, Design of Integrated Circuits for Optical Communications, New York, NY: McGraw-Hill, 2002.