DOI QR코드

DOI QR Code

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua (Department of Mathematics, Yanbian University) ;
  • Hyun, Yuntak (Department of Mathematics, Hanyang University) ;
  • Yun, Sungsik (Department of Financial Mathematics, Hanshin University)
  • Received : 2017.05.15
  • Accepted : 2017.05.23
  • Published : 2017.05.31

Abstract

In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

Keywords

References

  1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
  3. G.Z. Eskandani & J.M. Rassias: Approximation of a general cubic functional equation in Felbin's type fuzzy normed linear spaces. Results Math. 66 (2014), 113-123. https://doi.org/10.1007/s00025-014-0367-5
  4. W. Fechner: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. 71 (2006), 149-161. https://doi.org/10.1007/s00010-005-2775-9
  5. P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-43. https://doi.org/10.1006/jmaa.1994.1211
  6. A. Gilanyi: Eine zur Parallelogrammgleichung aquivalente Ungleichung. Aequationes Math. 62 (2001), 303-309. https://doi.org/10.1007/PL00000156
  7. A. Gilanyi: On a problem by K. Nikodem. Math. Inequal. Appl. 5 (2002), 707-710.
  8. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  9. Pl. Kannappan: Quadratic functional equation and inner product spaces. Results Math. 27 (1995), 368-372. https://doi.org/10.1007/BF03322841
  10. J. Lee: Stability of functional equations in matrix random normed spaces: a fixed point approach. Results Math. 66 (2014), 99-112. https://doi.org/10.1007/s00025-014-0366-6
  11. M.S. Moslehian & Gh. Sadeghi: A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Anal.-TMA 69 (2008), 3405-3408. https://doi.org/10.1016/j.na.2007.09.023
  12. C. Park, Y. Cho & M. Han: Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
  13. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  14. J. Ratz: On inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. 66 (2003), 191-200. https://doi.org/10.1007/s00010-003-2684-8
  15. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  16. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.