DOI QR코드

DOI QR Code

Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

열원 입력과 비드 생성 방법이 원통형 다층 금속 용접 과정의 유한요소해석에 미치는 영향

  • Park, Won Dong (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Bahn, Chi Bum (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Ji Hoon (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2016.09.01
  • Accepted : 2017.01.23
  • Published : 2017.06.01

Abstract

In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the $1000^{\circ}C$), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

본 논문에서는 원통형 다층 이종 금속 용접부를 대상으로 유한요소 해석을 수행하여, 열원 입력 방법과 용접 비드 생성 방법이 용접 잔류 응력 분포에 미치는 영향을 고려하였다. 열원 입력 방법은 열속 입력 방법과 온도 경계조건 입력 방법으로 나누어 비교하였고, 용접 비드 생성 방법은 요소망 생성 방법과 평온 요소망 방법으로 나누어 비교하였다. 두 열원 입력 방법에 따른 열 해석 결과는 차이가 있었으나, 응력 해석 결과는 유사하였다. 이것은 고온(약 $1000^{\circ}C$ 이상)에 노출되었던 영역이 비슷하고, 고온에서 재료의 강도가 매우 낮아 용접 비드의 온도가 용접잔류응력에 미치는 영향이 미미하기 때문이다. 두 용접 비드 생성 방법의 용접 잔류응력 분포는 유사하였지만 요소망 생성 방법 적용 시 용접 비드 경계에서 겹침과 들뜸이 발생하였다. 대변형이 발생하는 모델의 용접부 형상을 정확하게 모사하기 위해서는 평온요소망이 더 적합하다고 판단된다.

Keywords

References

  1. Kim, J.-S. and Jin, T.-E., 2003, "Development of Residual Stress Analysis Procedure for Fitness-forservice Assessment of Welded Structure," Trans. Korean Soc. Mech. Eng. A, Vol. 27, No. 5, pp. 713-723. https://doi.org/10.3795/KSME-A.2003.27.5.713
  2. Song, T.-K., Bae, H.-Y., Kim, Y.-J., Lee, K.-S. and Park, C.-Y., 2008, "Sensitivity Analyses of Finite Element Method for Estimating Residual Stress of Dissimilar Metal Multi-pass Weldment in Nuclear Power Plant," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 9, pp. 770-781. https://doi.org/10.3795/KSME-A.2008.32.9.770
  3. Broussard, J., 2015, "Materials Reliability Program: Finite-Element Model Validation for Dissimilar Metal Butt-Welds (MRP-316, Revision 1)," Vol. 1 and 2, EPRI, Palo Alto, CA.
  4. Michael, B., Rudland, D. J. and Csontos, A., 2014, "Weld Residual Stress Finite Element Analysis Validation: Part 1, Data Development Effort," Nuclear Regulatory Commission, Washington, DC.
  5. Song, T.-K., Bae, H.-Y., Kim, Y.-J., Lee, K.-S., Park, C.-Y., Yang, J.-S., Huh, N.-S., Kim, J.-W., Park, J.-S., Song, M.-S., Lee, S.-G., Kim, J.-S., Yu, S.-C. and Chang, Y.-S., 2009, "Assessment of Round Robin Analyses Results on Welding Residual Stress Prediction in a Nuclear Power Plant Nozzle," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 1, pp. 72-81. https://doi.org/10.3795/KSME-A.2009.33.1.72
  6. Dassault Systems, 2015, "ABAQUS 2016 User's Manuals."
  7. Yaghi, A.H., Hyde, T.H., Becker, A.A. and Sun, W., 2013, "Finite Element Simulation of Residual Stresses Induced by the Dissimilar Welding of a P92 Steel Pipe with Weld Metal IN625," International Journal of Pressure Vessels and Piping, Vol. 111, pp. 173-186.
  8. Bjorn, B. and Josefson, B. L., 2008, "A Parametric Study of Residual Stresses in Multi-pass Butt-welded Stainless Steel Pipes," International Journal of Pressure Vessels and Piping, Vol. 75, pp. 11-25.
  9. Dean, D. and Murakawa, H., 2006, "Numerical Simulation of Temperature Field and Residual Stress in Multi-pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements," Computational Materials Science, Vol. 37, No. 3, pp. 269-277. https://doi.org/10.1016/j.commatsci.2005.07.007
  10. Bae, H.-Y., Kim, J. H., Kim, Y. J., Oh, C. Y., Kim, J. S., Lee, S. H. and Lee, K. S. 2012, "Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-groove Weld in RPV CRDM Penetration Nozzle," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 10, pp. 1115-1130. https://doi.org/10.3795/KSME-A.2012.36.10.1115
  11. Kim, J.-S., Ra, M.-S. and Lee, K.-S., 2015, "Investigation on the Effects of Geometric Variables on the Residual Stresses and PWSCC Growth in the RPV BMI Penetration Nozzles," Journal of Mechanical Science and Technology, Vol. 29, No. 3, pp. 1049-1064. https://doi.org/10.1007/s12206-015-0217-8
  12. Lindgren and Lars-Erik. 2001, "Finite Element Modeling and Simulation of Welding Part 1: Increased Complexity," Journal of thermal stresses, Vol. 24, No. 2, pp. 141-192. https://doi.org/10.1080/01495730150500442
  13. Yaghi, A., Hyde, T.H., Becker, A.A., Sun, W. and Williams, J.A., 2006, "Residual Stress Simulation in Thin and Thick-walled Stainless Steel Pipe Welds Including Pipe Diameter Effects," International Journal of Pressure Vessels and Piping, Vol. 83, No. 11, pp. 864-874. https://doi.org/10.1016/j.ijpvp.2006.08.014
  14. Broussard, J., 2015, "Material Reliability Program: Welding Residual Stress Dissimilar Metal Butt-weld Finite Element Modeling Handbook (MRP-317, Revision 1)," EPRI, Palo Alto, CA.
  15. D Elcoate, C. D., Dennis, R.J., Bouchard, P.J. and Smith, M.C., 2015, "Three Dimensional Multi-pass Repair Weld Simulations," International Journal of Pressure Vessels and Piping, Vol. 82, No. 4, pp. 244-257. https://doi.org/10.1016/j.ijpvp.2004.08.003
  16. John, G., Chakravarti, A. and Bibby, M., 1984, "A New Finite Element Model for Welding Heat Sources," Metallurgical transactions B, Vol. 15, No. 2, pp. 299-305. https://doi.org/10.1007/BF02667333
  17. Rudland, D., et al, 2007, "Comparison of Welding Residual Stress Solutions for Control Rod Drive Mechanism Nozzles," ASME 2007 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, pp. 997-1011.