DOI QR코드

DOI QR Code

Advanced Intensity Measures for Probabilistic Seismic Demand Model of Nonstructural Components Considering the Effects of Earthquake

지진에 의한 영향을 고려한 비구조물 확률론적 내진응답모델링을 위한 향상된 지진강도

  • Hur, Ji-eun (Korea Research Institute of Smart Material & Structures System)
  • 허지은 (한국스마트구조시스템연구원)
  • Received : 2017.03.13
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

Nonstructural components, such as electrical equipment, have critical roles in the proper functionality of various infrastructure systems. Some of these devices in certain facilities should operate even under strong seismic shaking. However, it is challenging to define each mechanical and operational failure and determine system failure probabilities under seismic shaking due to the uncertainties in earthquake excitations and the diversity of electrical equipment, among other factors. Therefore, it is necessary to develop effective and practical probabilistic models for performance assessment of electrical equipment considering variations in equipment features and earthquakes. This study will enhance the understanding of the effect of rocking behavior on nonstructural equipment, and linear-to-nonlinear behavior of restrainers. In addition, this study will generate probabilistic seismic demand models of rigid equipment for a set of conventional and novel intensity measures.

전기 장비와 같은 비구조적 요소는 다양한 제반 시설에서 적절한 기능을 수행하는 중요한 역할을 한다. 특정 시설에서 이러한 비구조적 요소 중 일부는 강한 지진 발생이 발생한다고 하더라고 계속적으로 작동해야 한다. 그러나 다양한 이유 중 지진 진동의 불확실성과 전기 장비와 같은 비구조적 요소의 다양성 때문에 지진 진동의 영향으로 인한 각 기계적 손상과 작동 상의 손상을 정의하는 것과 시스템 손상 확률을 결정하는 것은 어려운 일이다. 따라서 비구조적 요소의 특성과 지진의 변화를 고려한 전기 장비의 성능 평가를 위한, 실용이고 효과적인 확률 모델을 개발할 필요가 있다. 이 연구는 비구조적 요소의 동적 거동과 비구조적 요소를 구조물에 구속 시키는 구속 장치의 선형 거동 및 비선형 거동에 대한 이해를 향상 시킬 것이다. 또한, 이 연구는 폭넓고 새로운 지진 강도를 위한 구속된 비구조적 요소의 확률론적 내진 응답 모델을 생성할 것이다.

Keywords

References

  1. Shenton, H. W., Criteria for initiation of slide, rock, and slide rock rigid body modes. Journal of Engineering Mechanics, ASCE, vol. 122, no. 7, pp. 690-693, 1996. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690)
  2. Taniguchi, T., Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion. Earthquake Engineering and Structural Dynamics, vol. 31, no. 8, pp. 1481-1500, 2002. DOI: https://doi.org/10.1002/eqe.170
  3. Yim A. C., Chopra A., Simplified earthquake analysis of multistory structures with foundation uplift. Journal of Structural Engineering, vol. 111, no. 12, pp. 2708-2731, 1985. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2708)
  4. Makris, N., Zhang, J. Rocking Response and Overturning of Anchored Equipment under Seismic Excitations. PEER Report, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley NUREG -U.S, 1999.
  5. Makris, N., Zhang, J., Rocking Response of Anchored Blocks Under Pulse-Type Motions. Journal of Engineering Mechanics, ASCE, vol. 127, no. 5, pp. 484-493, 2001. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(484)
  6. Gupta A., Rustogi S. K., Gupta A. K., Ritz vector approach for evaluating in cabinet response spectra. Nuclear engineering and design, vol. 190, no. 3, pp. 255-272, 1999. DOI: https://doi.org/10.1016/S0029-5493(99)00076-X
  7. Yang J., Rustogi S. K., Gupta A., Rocking stiffness of mounting arrangements in electrical cabinets and control panels. Nuclear engineering and design, vol. 219, no. 2, pp. 127-141, 2003. DOI: https://doi.org/10.1016/S0029-5493(02)00279-0
  8. Hur J., Seismic performance evaluation of switchboard cabinets using nonlinear numerical models. Chapters4-6, Georgia Institute of Technology, 2012.
  9. Hur J., Shafieezadeh A., Characterization of Main-Shock Effects on the Aftershock Fragility of Rigid Electrical Equipment. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures. pp. 4415 -4421, 2013.
  10. Baker, J. W., Lin, T., Shahi, S. K.,, Jayaram, N., New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program. PEER Technical Report 2011/03, 2011.
  11. Cornell C. A. Jalayer F., Hamburger R. O., Foutch D. A., Probabilistic basis for the 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. Journal of Structural Engineering, vol. 128, no. 4, pp. 526-533, 2002. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
  12. Bandypadhyay K. K., Hofnayer C. H., Kassir M. K., Pepper S. E., Seismic Fragility of Nuclear Power Plant Components [PHASE II]," NUREG/CR-4659, BNL-NUREG-52007, 2, Department of Nuclear Energy, Brookhaven National Laboratory, Long Island, 1987.
  13. Shampine L. F., Reichelt M. W., The Matlab ODE Suite. SIAM Journal on Scientific Computing vol. 18, no. 1, pp. 1-22, 1997. DOI: https://doi.org/10.1137/S1064827594276424