DOI QR코드

DOI QR Code

Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12

  • Kang, Du-Kyeong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Cho-Ryong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Sun Hee (Department of Microbiology and Molecular Biology, Chungnam National Univercity) ;
  • Bae, Jung-Hoon (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul) ;
  • Rhee, Young Ha (Department of Microbiology and Molecular Biology, Chungnam National Univercity) ;
  • Sung, Bong Hyun (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sohn, Jung-Hoon (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2016.12.20
  • Accepted : 2017.03.09
  • Published : 2017.05.28

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of PHAs from crude sludge palm oil (SPO) as an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

Keywords

References

  1. Wang HH, Zhou XR, Liu Q, Chen GQ. 2011. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1497-1507. https://doi.org/10.1007/s00253-010-2964-x
  2. Gumel AM, Annuar MS, Heidelberg T. 2012. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS One 7: e45214. https://doi.org/10.1371/journal.pone.0045214
  3. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8: 791-808. https://doi.org/10.3144/expresspolymlett.2014.82
  4. Chen YJ, Huang YC, Lee CY. 2014. Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J. Biosci. Bioeng. 118: 145-152. https://doi.org/10.1016/j.jbiosc.2014.01.012
  5. Choi D, Chipman DC, Bents SC, Brown RC. 2010. A technoeconomic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160: 1032-1046. https://doi.org/10.1007/s12010-009-8560-9
  6. Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. 2016. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N. Biotechnol. 37: 24-38.
  7. Lee SH, Kim JH, Mishra D, Ni YY, Rhee YH. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102: 6159-6166. https://doi.org/10.1016/j.biortech.2011.03.025
  8. Song JH, Jeon CO, Choi MH, Yoon SC, Park W. 2008. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J. Microbiol. Biotechnol. 18: 1408-1415.
  9. Singh AK, Mallick N. 2009. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA copolymer by Pseudomonas aeruginosa MTCC 7925. J. Ind. Microbiol. Biotechnol. 36: 347-354. https://doi.org/10.1007/s10295-008-0503-x
  10. Ji CM, Eong PP, Ti TB, Seng CE, Ling CK. 2013. Biogas from palm oil mill effluent (POME): opportunities and challenges from Malaysia's perspective. Renew. Sustain. Energy Rev. 26: 717-726. https://doi.org/10.1016/j.rser.2013.06.008
  11. Abdullah N, Sulaiman F. 2013. The oil palm wastes in Malaysia, pp. 75-100. In Matovic MD (ed.). Biomass Now - Sustainable Growth and Use. InTech, Croatia, EU.
  12. Kellerhals MB, Kessler B, Tchouboukov A, Brandl H, Witholt B. 2000. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33: 4690-4698. https://doi.org/10.1021/ma000655k
  13. Wan Nawawi WM, Jamal P, Alam MZ. 2010. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 101: 9241-9247. https://doi.org/10.1016/j.biortech.2010.07.024
  14. Chen GQ, Hajnal I, Wu H, Lv L, Ye J. 2015. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 33: 565-574. https://doi.org/10.1016/j.tibtech.2015.07.007
  15. Liu Q, Luo G, Zhou XR, Chen GQ. 2011. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13: 11-17. https://doi.org/10.1016/j.ymben.2010.10.004
  16. Hayyan A, Alam MZ, Mirghani ME, Kabbashi NA, Hakimi NI, Siran YM, et al. 2010. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour. Technol. 101: 7804-7811. https://doi.org/10.1016/j.biortech.2010.05.045
  17. Kim DY, Kim YB, Rhee YH. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28: 23-29. https://doi.org/10.1016/S0141-8130(00)00150-1
  18. Alias Z, Tan IK. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresour. Technol. 96: 1229-1234. https://doi.org/10.1016/j.biortech.2004.10.012
  19. Ciesielski S, Przybylek G. 2014. Volatile fatty acids influence on the structure of microbial communities producing PHAs. Braz. J. Microbiol. 45: 395-402. https://doi.org/10.1590/S1517-83822014000200005
  20. Park SJ, Lee SY. 2004. New FadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in FadB mutant Escherichia coli. Biotechnol. Bioeng. 86: 681-686. https://doi.org/10.1002/bit.20065
  21. Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. 2014. Engineering the diversity of polyesters. Curr. Opin. Biotechnol. 29: 24-33. https://doi.org/10.1016/j.copbio.2014.02.013
  22. Du C, Sabirova J, Soetaert W, Lin SKC. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14-25.
  23. Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbuchel A, Poirier Y. 1998. Synthesis of medium-chainlength polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proc. Natl. Acad. Sci. USA 95: 13397-13402. https://doi.org/10.1073/pnas.95.23.13397
  24. Ward PG, O'Connor KE. 2005. Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int. J. Biol. Macromol. 35: 127-133. https://doi.org/10.1016/j.ijbiomac.2005.01.001
  25. Borrero-de Acuna JM, Bielecka A, Haussler S, Schobert M, Jahn M, Wittmann C, et al. 2014. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb. Cell Fact. 13: 88. https://doi.org/10.1186/1475-2859-13-88
  26. Hassan MA, Yee L, Yee P, Ariffin H, Raha AR, Shirai Y, et al. 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy 50: 1-9. https://doi.org/10.1016/j.biombioe.2012.10.014
  27. Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA. 2013. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz. J. Microbiol. 44: 539-549. https://doi.org/10.1590/S1517-83822013000200034

Cited by

  1. Molecular Profiling and Optimization Studies for Growth and PHB Production Conditions in Rhodobacter sphaeroides vol.13, pp.23, 2017, https://doi.org/10.3390/en13236471
  2. Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment vol.5, pp.2, 2021, https://doi.org/10.1007/s41748-021-00208-7