DOI QR코드

DOI QR Code

A Review of Model and Modeling in Science Education: Focus on the Metamodeling Knowledge

과학교육에서 모델 및 모델링에 대한 고찰 -메타모델링 지식을 중심으로-

  • Received : 2016.07.25
  • Accepted : 2017.03.06
  • Published : 2017.04.30

Abstract

The purpose of this study is to examine metamodeling knowledge and its components, which means knowledge about model and modeling required for students and teachers for successful application of modeling in the field of science education based on research literature. For this, we analyzed and categorized major previous studies on modeling and modeling through research literature methods. Metamodeling knowledge aims to recognize models and modeling and is the most crucial element to create a scientific model in scientific modeling practice. The point of view of metamodeling knowledge proposed in this study is categorize nature of model, multiplicity of model, purpose of model, modeling process, and evaluation and revision of model. Students should be able to achieve more in-depth understanding through the awareness of the nature of the model. The development of metamodeling knowledge can facilitate students' science learning.

이 연구의 목적은 선행 연구를 바탕으로 하여 과학교육의 현장에서 모델과 모델링의 성공적인 적용을 위해 필요한 학생과 교사에게 요구되는 모델과 모델링에 대한 지식을 의미하는 메타모델링 지식과 그 구성요소에 대해서 고찰하는 것이다. 이를 위해 모델과 모델링에 대한 주요 선행 연구들을 문헌연구 방법을 통해 분석하고 범주화하였으며, 과학교육에서 효과적으로 적용을 위한 시사점을 도출하고자 하였다. 메타모델링 지식은 모델과 모델링에 대해 인식하는 것이고, 과학적 모델링 실습에서 과학적 모델을 만드는데 가장 결정적인 요소이다. 이 연구에서 제안하고자 하는 메타모델링 지식의 구성요소는 모델의 본성, 모델의 다양성, 모델의 목적, 모델링 과정, 모델의 평가와 수정으로 범주화하였다. 모델의 본성에 대한 이해를 통해서 모델이 가지는 여러 가지 속성을 알게 되며 모델과 모델링에 대한 깊이 있는 이해의 틀을 가지게 된다. 모델의 다양성은 같은 자연 현상을 나타내기 위한 여러 모델이 존재하는 것과 모델의 분류에 대한 이해를 하는 것이다. 모델의 목적은 과학자들이 자연 현상을 설명하거나 예측하기 위해 모델을 만드는 것임을 학생들인 인식하여 모델을 구성하고 사용함으로써 과학적 이해를 하는 것이다. 모델링 과정은 모델을 만들고 평가하고 수정으로 이루어진다는 것을 아는 것이다. 이를 통해 학생들이 모델링 실습에 참여할 수 있게 되고, 교사는 모델링 실습에서 학생을 돕는 제대로 된 안내자의 역할을 할 수 있게 된다. 모델의 평가 및 수정은 학생들이 관찰한 자연 현상을 잘 설명하기 위해 다른 사람과의 의사소통을 통해 모델을 수정하는 일련의 과정으로 모델을 정교하게 만드는 것을 의미한다. 메타모델링 지식의 구성요소에 대한 이해를 통해 학생들과 교사들이 모델과 모델링에 대해서 느끼는 어려움을 해결하고 과학교육에서 모델과 모델링 수업을 성공적으로 적용할 수 있는 지침을 제시할 수 있다.

Keywords

References

  1. Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., & Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. (2004). Inquiry in science education: international perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10118
  2. Aduriz-Bravo, A. (2013). A semantic view of scientific models for science education, Science and Education, 22(7), 1593-1611. https://doi.org/10.1007/s11191-011-9431-7
  3. An, Y. L., & Kim, H. J. (2011). Recognition of the nature of science by preservice science teachers on the basis of the atomic model. Journal of the Korean Association for Research in Science Education, 31(4), 539-556.
  4. Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
  5. Bogiages, C. (2014). The development of a performance progression for science teachers' implementation of model-based teaching. University of South Carolina - Columbia. (Doctoral dissertation).
  6. Bottcher, F., & Meisert, A. (2011). Argumentation in science education: a model-based framework. Science and Education, 20(2), 103-140. https://doi.org/10.1007/s11191-010-9304-5
  7. Boulter, C. J., & Buckly C. B. (2000). Constructing a typology of model for science education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in Science Education (pp. 41-57). Dordrecht, The Netherlands: Kluwer Academic.
  8. Brewe, E. (2008). Modeling theory applied: modeling instruction in introductory physics. American Journal of Physics, 76(12), 1155-1160. https://doi.org/10.1119/1.2983148
  9. Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 119-135). Dordrecht, The Netherlands: Kluwer Academic.
  10. Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive modes and their pedagogical functions in model-based inquiry (MBI) classrooms. International Journal of Science Education, 34(15), 2393-2419. https://doi.org/10.1080/09500693.2012.704552
  11. Cartier, J. & Stewart, J. (2000). Teaching the nature of inquiry: Further developments in a High School Genetics program. Science Education, 9(3), 247-267. https://doi.org/10.1023/A:1008779126718
  12. Cha, J. H., Kim, Y. H., & Noh, T. H. (2004). Middle and high school students? views on the scientific model. Journal of the Korean Chemical Society, 48(6), 638-644. https://doi.org/10.5012/jkcs.2004.48.6.638
  13. Chamizo, J. A. (2013). A new definition of models and modeling in chemistry' teaching. Science and Education, 22(7), 1613-1632. https://doi.org/10.1007/s11191-011-9407-7
  14. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1991). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152. https://doi.org/10.1207/s15516709cog0502_2
  15. Cho, H. S. (2014). Development and effect of argument-based modeling strategy as teaching method in middle school students (Doctoral dissertation). Pusan national university, Korea.
  16. Cho, H. S., Nam, J. H., & Lee, D. W. (2014). The development of argument-based modeling strategy using scientific writing. Journal of the Korean Association for Research in Science Education, 34(5), 479-490. https://doi.org/10.14697/jkase.2014.34.5.0479
  17. Cho, H. S., & Nam, J. H. (2014).The impact of the argument-based modeling strategy using scientific writing implemented in middle school science. Journal of the Korean Association for Research in Science Education, 34(6), 583-592. https://doi.org/10.14697/jkase.2014.34.6.0583
  18. Clement, J. J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
  19. Clement, J. J., Rea-Ramirez, M. A., & Mimez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement, M. A. Rea-Ramirez,& Mary Anne (Eds.) (pp. 23-43). Dordrecht, The Netherlands: Kluwer Academic.
  20. Crawford, B., & Cullin, M. (2005). Dynamic assessments of preservice teachers' knowledge of models and modelling. In K. Boersma, M. Goedhart, O. de Jong, & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 309-323). Dordrecht: Springer.
  21. Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers'conceptions of modelling in science. International Journal of Science Education, 26(11), 1379-1401. https://doi.org/10.1080/09500690410001673775
  22. Davis, E. A., Kenyon, L., Hug, B., Nelson, M., Beyer, C., Schwarz, C., & Reiser, B. J. (2008). MoDeLS: designing supports for teachers using scientific modeling. Paper presented at the Association for Science Teacher Education, St. Louis, MO, January 10, 2008.
  23. Devi, R., Tiberghien, A., Baker, M., & Brna, P. (1996). Modelling students' construction of energy models in physics. Instructional Science, 24(4), 259-293. https://doi.org/10.1007/BF00118052
  24. Everett, S., Otto, C. & Luera, G. R. (2009). Preservice elementary teachers' growth in knowledge of models in a science capstone course. International Journal of Science and Mathematics Education, 7(6), 1201-1225. https://doi.org/10.1007/s10763-009-9158-y
  25. Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students' model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895-921. https://doi.org/10.1002/tea.21226
  26. Franco, C. & Colinvaux, D. (2000). Grasping mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp.93-118). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  27. Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of Science, 27(1), 17-40.
  28. Gilbert, J. K. (2004). Model and modelling: routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4
  29. Gilbert, J. K. (2008). Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (pp. 3-24). Dordrecht, The Netherlands: Kluwer Academic.
  30. Gilbert, J. K., & Boulter, C. J. (1997). Learning science through models and modelling: in B. J. Fraser and K. Tobin, eds., The International Handbook of Science Education (pp. 53-66). Dordrecht, The Netherlands: Kluwer Academic.
  31. Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, part 1: horses for courses. International Journal of Science Education, 20(1), 83-87. https://doi.org/10.1080/0950069980200106
  32. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107
  33. Gil-Perez, D. (1996). New trends in science education. International Journal of Science Education, 18(8), 889-901. https://doi.org/10.1080/0950069960180802
  34. Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: constructing conceptual models. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 3-33). Mahwah, NJ: Erlbaum.
  35. Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839
  36. Gobert, J. D., O'Dwyer, L., Horwitz, P., Buckley, B., Levy, S., & Wilensky, U. (2011). Examining the relationship between students' understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684. https://doi.org/10.1080/09500691003720671
  37. Gobert, J. D. & Pallant, A. (2004). Fostering students' epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13(1), 7-22. https://doi.org/10.1023/B:JOST.0000019635.70068.6f
  38. Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. https://doi.org/10.1080/095006900289976
  39. Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of Physics. Science Education, 85(6), 106-121.
  40. Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
  41. Grunkorn, J., Hansch, J., Upmeier zu Belzen, A. & Kruger, D. (2014). Assessing students' understandings of biological models and their use in science to evaluate a theoretical framework. International Journal of Science Education, 36(10), 1651-1684. https://doi.org/10.1080/09500693.2013.873155
  42. Gunstone, R., & Mitchell, I. J. (1998). Metacognition and conceptual change. In J. L. Mintzes, J. H. Wandersee, & J. D. Noval (Eds.), Teaching for science education: A human constructivist view (pp. 133-163). San Diego, CA: Academic Press.
  43. Ha, J. H., Lee, H. J., & Kang, S. J. (2009). Perception of science high school students on modeling activity. Journal of Gifted & Talented Education, 19(1), 184-202.
  44. Halloun, I. A. (1996). Schematic Modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041. https://doi.org/10.1002/(SICI)1098-2736(199611)33:9<1019::AID-TEA4>3.0.CO;2-I
  45. Halloun, I. A. (2007). Mediated modeling in science education. Science and Education, 16(7-8), 653-697. https://doi.org/10.1007/s11191-006-9004-3
  46. Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for learning chemistry. Science Education, 80(5), 509-534. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
  47. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  48. Henze, I., van Driel, J., & Verloop, N. (2007). The change of science teachers' personal knowledge about teaching models and modelling in the context of science education reform. International Journal of Science Education, 29(15), 1819-1846. https://doi.org/10.1080/09500690601052628
  49. Hestenes, D. (1993). Modeling is the name of the game. A presentation at the NSF Modeling Conference (Feb. 1993).
  50. Hestenes, D. (1987). Toward a modelling theory of physics instruction. American Journal of Physics, 55(5), 440-454. https://doi.org/10.1119/1.15129
  51. Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22(1), 85-142. https://doi.org/10.1080/03057269308560022
  52. Hodson, D. (2014). Learning science, learning about science, doing Science: different goals demand different learning methods. International Journal of Science Education, 36(15), 2534-2553. https://doi.org/10.1080/09500693.2014.899722
  53. Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students' systems modelling in ecology. Journal of Science Education and Technology, 10(4), 319-345. https://doi.org/10.1023/A:1012243102249
  54. Jang, E. K., Ko, W., & Kang, S. J. (2012). The analysis of university student's modeling patterns and perceptions through modeling experiments. Journal of the Korean Association for Research in Science Education, 32(1), 1-14. https://doi.org/10.14697/jkase.2012.32.1.001
  55. Jeong, H. S., & Kim, Y. M. (2014). An investigation of pre-service secondary science teachers' perceptions on scientific models. Teacher Education Research, 53(4), 682-692. https://doi.org/10.15812/ter.53.4.201412.682
  56. Johnson-Laird, P. N. (1980). Mental Models in Cognitive Science. Cognitive Science, 4(1), 71-115. https://doi.org/10.1207/s15516709cog0401_4
  57. Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13(1-2), 15-37. https://doi.org/10.1080/10494820500173292
  58. Justi, R., & Gilbert, J. K. (2002). Modeling, teachers' views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  59. Justi, R., & Gilbert, J. K. (2003). Teachers'views on the nature of models. International Journal of Science Education, 25(11), 1369-386. https://doi.org/10.1080/0950069032000070324
  60. Kim, H. B., Kim, S. H., Lee, S. K., & Kim, H. L. (2001). The effect of a factory analogy on student motivation and understanding of the function of cell parts. Biology education, 29(4), 346-353.
  61. Kim, M. Y., & Kim, H. B., (2007). Analysis of high school students' conceptual change in model-based instruction for blood circulation. Journal of the Korean Association for Research in Science Education, 27(5), 379-393.
  62. Kim, S. J., Maeng, S. H., Cha, H. J., Kim, C. J., & Choe, S. U. (2013). The contents of practical knowledge realized in two science teachers' classes on social construction of scientific models. Journal of the Korean Association for Research in Science Education, 33(4), 807-825. https://doi.org/10.14697/jkase.2013.33.4.807
  63. Kim, H. Y. (2013). An investigation of the effect of model-centered instruction using language diagnosis tool. The Journal of Educational Information and Media, 19(2), 175-200.
  64. Kim, A. J,, Park, H. J., Kim, C. J., Kim, H. B., Yoo, J. H., & Choe, S. U. (2012). Analysis of scientific models in science textbooks for the 7th grade. Journal of the Korean Chemical Society, 56(3), 363-370. https://doi.org/10.5012/jkcs.2012.56.3.363
  65. Koponen, I. (2007). Models and modelling in physics education: a critical re-analysis of philosophical underpinnings and suggestions for revisions. Science and Education, 16(7-8), 751-773. https://doi.org/10.1007/s11191-006-9000-7
  66. Kozma, R. B. & Russell, J. (1997). Multimedia and understanding: expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  67. Krell, M., Upmeier zu Belzen, A., & Kruger, D.(2012). Students' understanding of the purpose of models in different biological contexts. International Journal of Biology Education, 2(2), 1-34.
  68. Krell, M., Reinisch, B., & Kruger, D. (2014). Analyzing students' understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45(3), 367-393. https://doi.org/10.1007/s11165-014-9427-9
  69. Lederman, N. G. (2007). Nature of science: Past, present and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah: Lawrence Erlbaum Associates.
  70. Lee, J. M., Kang, E, J., Kim, M. S., Kam, G. T., Kim, J. O., Park. T. J., Kim, S. I., Shin, H, J., Lee, K. O., Kim. Y. J., Lee, J. H., Do, G. S., Lee, Y. E., Park, J. Y., Park, C. H., & Lee. J. S. (2015). Cognitive phychology. 5rd Ed. Hakgisa, Seoul.
  71. Lee, M. J. (1999). Children's mental models of the free-fall of objects. Journal of the Korean Association for Research in Science Education, 19(3), 389-399.
  72. Lim, H. J. (2005). High school students' understanding of the atomic model and orbitals. Journal of the Korean Association for Research in Science Education, 25(2), 297-306.
  73. Luisi, P.L. & Thomas, R. M. (1990). The pictographic molecular paradigm: Pictorial communication in the chemical and biological sciences. Naturwissenschaften, 77(2), 67-74. https://doi.org/10.1007/BF01131776
  74. Mandinach, E., & Cline, H. (1993). Systems, science and schools. System Dynamics Review, 9(2), 195-206. https://doi.org/10.1002/sdr.4260090208
  75. Mendonca, P. C. C., & Justi, R. (2013). An instrument for analyzing arguments produced in modeling-based chemistry lessons. Journal of research in science teaching. 51(2), p192-218. https://doi.org/10.1002/tea.21133
  76. Ministry of Education (MOE). (2015). 2015 revised curriculum-Science. Seoul: Ministry of Education.
  77. Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. Morrison & M. S. Morgan (Eds.), Models as mediators (pp. 10-37). Cambridge: Cambridge University Press.
  78. National Research Council (1996). National education standards. Washington, D.C.: National Academy Press.
  79. National Research Council. (2012). A framework for K-12 science education: practices, cross-cutting concepts, and core ideas. committee on a conceptual Framework for new K-12 science education standards. Washington DC: National Academy Press.
  80. NGSS Lead States. (2013). Next generation science standards: For states, by states.Washington, DC: National Academies Press.
  81. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: verbal reports on mental processes. Psychological Review, 84(3), 231-59. https://doi.org/10.1037/0033-295X.84.3.231
  82. Odenbaugh, J. (2005). Idealized, inaccurate but successful: a pragmatic approach to evaluating models in theoretical ecology. Biology and Philosophy, 20, 231-255. https://doi.org/10.1007/s10539-004-0478-6
  83. Oh, P. S. (2007). With a focus on lessons in the domains of atmospheric and oceanic earth sciences-analysis of the manners of using scientific models in secondary earth science classrooms. Journal of the Korean Association for Research in Science Education, 27(7), 645-662.
  84. Oh, P. S. (2009). Preservice elementary teachers' perceptions on models used in science and science education, Journal of Korean Elementary Science Education, 28(4), 450-466.
  85. Oh, P. S., & Oh, S. (2011). What teachers of science need to know about models: an overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  86. Osborne, J. F. & Patterson, A. (2011). Scientific argument and explanation: a necessary distinction?. Science Education, 95(4), 627-638. https://doi.org/10.1002/sce.20438
  87. Ornek, F. (2008). Models in science education: applications of models in learning and teaching Science. International Journal of Environmental & Science Education, 3(2), 35-45.
  88. Passmore, C., Stewart, J., & Cartier, J. (2009). Model-based inquiry and school science: creating connections. School Science and Mathematics, 109(7), 394-402. https://doi.org/10.1111/j.1949-8594.2009.tb17870.x
  89. Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-554. https://doi.org/10.1080/09500693.2011.577842
  90. Penner, D. E. (2001). Cognition, computers, and synthetic science: building knowledge and meaning through modeling. Review of Research in Education, 25(2000-2001), 1-35.
  91. Piburn, M. D., Reynolds, S. J., Leedy, D. E., McAuliffe, C. M., Birk, J. P. & Johnson, J. K. (2002). The hidden earth: visualization of geologic features and their subsurface geometry. Paper presented at the annual meeting of National Association for Research in Science Teaching, New Orleans.
  92. Portides, D. P. (2007). The relation between idealization and approximation in scientific model construction. Science and Education, 16(7), 699-24. https://doi.org/10.1007/s11191-006-9001-6
  93. Raghavan, K., & Glaser, R. (1995). Model-based analysis and reasoning in science: The MARS Curriculum. Science Education, 79(1), 37-61. https://doi.org/10.1002/sce.3730790104
  94. Redish, E. F. (1994). The implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 792-803.
  95. Richards, J., Barowy, W., & Levin, D. (1992). Computer simulation in the science classroom. Journal of Science Education and Technology, 1(1), 67-79. https://doi.org/10.1007/BF00700244
  96. Romberg, T., Carpenter, T., & Kwako, J. (2005). Standards based reform and teaching for understanding. In T. Romberg, T. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters (pp. 3-26). Mahwah, NJ: Erlbaum.
  97. Rosenblueth, A., & Wiener, N. (1945). The role of models in science. Philosophy of Science, 12(4), 316-321. https://doi.org/10.1086/286874
  98. Rouse, W. B. & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363. https://doi.org/10.1037/0033-2909.100.3.349
  99. Schecker, H. P. (1993). Learning physics by making models. Physics Education, 28(2), 102-106. https://doi.org/10.1088/0031-9120/28/2/007
  100. Schwarz, C. V. (2002). Is there a connection? The role of meta-modeling knowledge in learning with models. In P. Bell, R. Stevens, & T. Satwicz (Eds.), Keeping learning complex: The Proceedings of the Fifth International Conference of the Learning Sciences (ICLS). Mahwah, NJ: Erlbaum.
  101. Schwarz, C. V. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744. https://doi.org/10.1002/sce.20324
  102. Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91(1), 158-186. https://doi.org/10.1002/sce.20177
  103. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  104. Schwarz, C. V., & White B. Y. (2005). Metamodeling knowledge: developing students' understanding of scientific modeling, Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  105. Shim, Y. S., Kim, C. J., Choe, S. U., Kim, H, B., Yoo, J. H., Park, H. J., Kim, H. Y., Park. K. M., Jang, S. H. (2015). Exploring small group features of the social-construction process of scientific model in a combustion class. Journal of the Korean Association for Research in Science Education, 35(2), 217-229. https://doi.org/10.14697/jkase.2015.35.2.0217
  106. Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices' reasoning during computer-based modelling, International Journal of Science Education, 27(14). 1695-1721. https://doi.org/10.1080/09500690500206408
  107. Sins, P., Savelsbergh, E., Van Joolingen, W., & van Hout-Wolters, B. (2009). The relation between students'epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9), 1205-1229. https://doi.org/10.1080/09500690802192181
  108. Snow, R. E. (1990). New approaches to cognitive and conative assessment in education. International Journal of Educational Research, 14(5), 455-473.
  109. Stewart, J., Hafner, R., Johnson, S., & Finkel, E. (1992). Science as model building: Computers and high-school genetics. Educational Psychologist, 27(3), 317-336. https://doi.org/10.1207/s15326985ep2703_4
  110. Stratford, S. J., Krajcik, J., & Soloway, E. (1998). Secondary students' dynamic modelling processes: Analysing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7(3), 215-234. https://doi.org/10.1023/A:1021840407112
  111. Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry "triplet". International Journal of Science Education, 33(2), 179-195. https://doi.org/10.1080/09500690903386435
  112. Treagust, D. F., Chittelborough, G. D., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
  113. Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2004). Students' understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34(1), 1-20. https://doi.org/10.1023/B:RISE.0000020885.41497.ed
  114. Valanides, C. & Angeli, N. (2008). Learning and teaching about scientific models with a computer-modeling tool. Computers in Human Behavior, 24(2), 220-233. https://doi.org/10.1016/j.chb.2007.01.005
  115. van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modeling in science. International Journal of Science Education, 21(11), 1141-1153. https://doi.org/10.1080/095006999290110
  116. van Driel, J. H., & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24(12), 1255-1272. https://doi.org/10.1080/09500690210126711
  117. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69. https://doi.org/10.1016/0959-4752(94)90018-3
  118. White, B. Y. (1993). Thinker Tools: causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1-100. https://doi.org/10.1207/s1532690xci1001_1
  119. White, B. Y., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. https://doi.org/10.1207/s1532690xci1601_2
  120. Windschitl M., Thompson J., & Braaten M., (2008). Beyond the scientific method: Model-Based Inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  121. Windschitl, M., & Thompson, J. (2013). The modeling toolkit. Science Teacher, 80(6), 63-69.
  122. Yoon, H. G. (2011). Pre-service elementary teachers' inquiry on a model of magnetism and changes in their views of scientific models. Journal of Korean Elementary Science Education, 30(3), 353-366.
  123. Zhang, B., Wong, L. H., Chew, L. C., Jacobson, M. J., & Looi, C. (2006). Using computer-based modelling for primary science learning and assessment, Paper presented at the 32nd Annual Conference of the International Association of Educational Assessment (IAEA) on "Assessment in an Era of Rapid Change: Innovations and Best Practices", Singapore, 21-26 May 2006.

Cited by

  1. 네트워크 분석을 통한 국내 과학교육 질적 연구동향 분석 vol.10, pp.3, 2017, https://doi.org/10.15523/jksese.2017.10.3.290
  2. Investigation on the Arts High School Students’ Understanding on the Nature of Scientific Models vol.22, pp.6, 2018, https://doi.org/10.24231/rici.2018.22.6.426
  3. 논의-기반 모델링 전략을 이용한 일반화학실험에서 글쓰기 대상에 따른 예비화학교사들의 모델링 능력 및 모델링에 대한 인식 분석 vol.63, pp.6, 2017, https://doi.org/10.5012/jkcs.2019.63.6.459