DOI QR코드

DOI QR Code

An Experimental Study on the Development of Electromagnetic Shielding Concrete Wall for Shielding High-altitude Electromagnetic Pulse (HEMP)

고고도 전자기파(HEMP)차폐를 위한 전자파 차폐 콘크리트 벽체 개발에 관한 실험적 연구

  • 최현준 (한양대학교 일반대학원) ;
  • 김형철 ((주)성신양회 기술연구소) ;
  • 임상우 (국방시설본부 경기북부시설단) ;
  • 이한승 (한양대학교 ERICA캠퍼스 건축학부)
  • Received : 2016.11.25
  • Accepted : 2017.02.15
  • Published : 2017.04.30

Abstract

Rather than causing damage from heat, blast, and radiation of a regular nuclear weapon, recently, it is predicted that North Korea has been inventing high altitude electromagnetic pulse (HEMP) missile in order to incapacitate electronic equipment. HEMP shielding facility is used for military purpose today. Despite the electromagnetic shielding effects from high quality compression plates, problems may include such as the possibility of electromagnetic influx resulting in the welding of the compression plates, and difficulties and high cost of construction. Therefore, in this study, a high electrical conducting material was added to the concrete experimental subject to ensure the shielding effect through electromagnetic waves to for the concrete structure, instead of building a shielding facility separately for the structure. Also, among the experimental subjects, 100 ${\mu}m$ of Iron-Aluminum alloy metal spraying coat was applied to two types with the highest shielding effect, and to two types with the lowest shielding effect. The result of the experiment indicates that experimental subjects added with a high electrical conductivity material did not meet the minimum shielding criteria of MIL-STD-118-125-1 standard, but all the experimental material applied to the metal spraying coating satisfied the minimum shielding criteria. In conclusion, it is considered that 100 µm of Iron-Aluminum alloy metal spraying coat contains high efficiency in the HEMP shielding.

북한은 최근 핵무기의 일반적인 열, 폭풍, 방사능 피해가 아닌 전자 장비를 무력화시키기 위한 고고도 전자기파 탄을 개발 중인 것으로 예측되고 있다. 현재 군용 목적으로 사용되고 있는 HEMP 차폐 시설 중 차폐 판의 경우 전자파 차폐 효과가 뛰어난 금속 판이 사용되고 있으나 이러한 금속판들은 차폐 시설 제작 시 용접 부위에서의 전자파 유입 가능성 등 시공상의 어려움과 높은 비용이 문제시 되고 있는 실정이다. 이에 본 연구에서 차폐 시설을 따로 구축하지 않고 콘크리트 구조물 자체로써 전자파 차폐 효과를 확보하기 위하여 콘크리트 실험체에 전기전도성이 높은 재료를 혼입하였다. 또한, 실험체 중 가장 높은 차폐효과를 보인 2가지 수준과, 가장 낮은 차폐 효과를 보인 2가지 수준에 $100{\mu}m$ 아연-알루미늄 합금 금속용사 피막을 적용하였다. 실험 결과 전기전도성이 높은 재료를 혼입한 실험체는 MIL-STD-118-125-1 규격 최소 차폐 기준을 만족하지 못하였으나, 금속용사 피막을 적용한 실험체에서는 모두 최소 차폐 기준을 만족하였다. 결론적으로, $100{\mu}m$ 아연-알루미늄 합금 금속용사 피막이 HEMP 차폐에 높은 효율성을 가지고 있다고 판단된다.

Keywords

References

  1. Chun, C.S., "North Korean Nuclear Crisis after the Fifth Nuclear Test and South Korea's Future Strategy", The Journal of Stragic Studies, Vol.23, No.3, 2016, pp.7-38.
  2. Lee, W.G., "EMP Protecting Measurements and Required Technology", The Proceedings of the Korea Electromagnetic Engineering Society, Vol.24, No.1, 2013, pp.79-96.
  3. Kim, H. S., "Reality and Developmental Methods of EMP Threats", Defense & Technology, Vol.414, 2013, pp.98-103.
  4. Kim, H.G., and Lee, H.K., "Development of Electromagnetic Wave Absorbing/Shielding Construction Materials", Magazine of the Korea Concrete Institute, Vol.20, No.6, 2008, pp.70-74. https://doi.org/10.22636/MKCI.2008.20.6.70
  5. Chung, D.D.L., "Electromagnetic Interference Shielding Effectiveness of Carbon Materials", Carbon, Vol.39, No.2, 2001, pp.279-285. https://doi.org/10.1016/S0008-6223(00)00184-6
  6. Chen, B. and Wu, K. and Yao, W., "Conductivity of Carbon Fiber Reinforced Cement-based Composites", Cement and Concrete Composites, Vol.26, No.4, 2004, pp.291-297. https://doi.org/10.1016/S0958-9465(02)00138-5
  7. Dai, Y., Sun, M., Liu, C., and Li, Z., "Electromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based Composites", Cement and Concrete Composites, Vol.32, No.7, 2010, pp.508-513. https://doi.org/10.1016/j.cemconcomp.2010.03.009
  8. Xu, Z., and Hao, H., "Electromagnetic Interference Shielding Effectiveness of Aluminum Foams with Different Porosity", Journal of Alloys and Compounds, Vol.617, 2014, pp.207-213. https://doi.org/10.1016/j.jallcom.2014.07.188
  9. Dou, Z., Wu, G., Huang, X.. Sun, D., and Jiang, L., "Electromagnetic Shielding Effectiveness of Aluminum Alloy-Fly ash Composites", Composites Part A: Applied Science and Manufacturing, Vol.38, No.1, 2007, pp.186-191. https://doi.org/10.1016/j.compositesa.2006.01.015
  10. Jin, L., Haiyan, Z., Ping, L., Xijiang, Y., and Guoxun, Z., "The Electromagnetic Shielding Effectiveness of a Low-cost and Transparent Stainless Steel Fiber/Silicone Resin Composite", IEEE Transactions on Electromagnetic Compatibility, Vol.56, No.2, 2014, pp.328-334. https://doi.org/10.1109/TEMC.2013.2280140
  11. Kim, Y.J., and Yi, C.K., "The UHF Wave Shielding Effectiveness of Mortar with Conductive Inclusions", Journal of the Architectural Institute of Korea Structure & Construction, Vol.31, No.4, 2015, pp.103-110. https://doi.org/10.5659/JAIK_SC.2015.31.4.103
  12. Lee, S.M., and Lee, H.S., "An Experimental Study on the Electromagnetic Shielding Efficiency of Concrete Applying Metal Spraying Finishing Method", The Proceedings of the Architectural Institute of Korea Structure & Construction, Vol.25, No.1, 2005, pp.225-228.
  13. Lee, M.B. and Roh, J.S., "A Study on the Electromagnetic Shielding Effects of the Metal-coated Window-glass in Architecture", Journal of the Architectural Institute of Korea, Vol.9, No.7, 1993, pp.101-106.
  14. Lee, S.H., Shim, J.W., Park, D.C., and Jung, M.Y., "Properties and Shielding Efficiency of Electromagnetic Wave Absorbing Inorganic Paint Using Carbon", Journal of the Architectural Institute of Korea Structure & Construction, Vol.19, No.1, 2003, pp.69-76.
  15. IEEE Std 299, "IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures", Institute of Electrical and Electronics Engineers, 1997, 39pp.
  16. MIL-STD-188-125-1, "High-altitude Electromagnetic Pulse (HEMP) Protection for Ground-based C4I Facilities Performing Critical, Time-urgent Missions Part 1 Fixed Facilities" Department of Defense Interface Standard, 1998, 98pp.
  17. DMFC 4-40-70, "Defense and Military Facility Standards: Design Criteria for Electromagnetic Protection", Ministry of National Defense, 2012, 75pp.
  18. Lee, H.K., Park, C.K., and Lee, S.H., "High-Density Concrete for Nuclear Shielding and Submarine Pipelines Protection", Magazine of the Korea Concrete Institute, Vol.18, No.1, 2006, pp.71-74. https://doi.org/10.22636/MKCI.2006.18.1.71
  19. Park J.H., and Lee, H.S. and Shin, J.H., "An Experimental Study on Evaluation on Bond Strength of Arc Thermal Metal Spraying According to Treatment Method of Water Facilities Concrete Surface", Journal of the Korea Institute of Building Construction, Vol.16, No.2, 2016, pp.107-115. https://doi.org/10.5345/JKIBC.2016.16.2.107
  20. KS F 2405, "Standard Test Method for Compressive Strength of Concrete", Korea Industrial Standards, 2010, 6pp.
  21. KS F 2408, "Standard Test Method for Flexural Strength of Concrete", Korea Industrial Standards, 2016, 11pp.
  22. Nhan, H.N., Jean-Louis, M., and Jean-Luc, W., "Modeling of Electromagnetic Shielding Effectiveness of Multilayer Conducting Composites in the Microwave Band." Communications and Electronics, ICCE'06. First International Conference on, IEEE, 2006, pp.482-485.
  23. Baek, I.Y., "An Experimental Study on the Electromagnetic Shielding Performance of Arc Thermal Metal Spraying Film as Shielding Material for High-altitude Electromagnetic Pulse(HEMP)", Hanyang University Graduate School of Engineering, 2015, 46pp.