• Title/Summary/Keyword: 금속 용사

Search Result 93, Processing Time 0.028 seconds

Corrosion Protection of Steel by Applying a Zn-Sn Metal Spray System (Zn-Sn 합금을 이용한 강구조물의 금속용사공법 방식성능평가 연구)

  • Ryu, Hwa-Sung;Jeong, Dong-Geun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.505-513
    • /
    • 2014
  • The purpose of this study is to evaluate the corrosion protective properties of a Zn-Sn metal spray method according to the contents of Zn and Sn by a CASS test and the electrochemical theory. In the experiment, the CASS test and the electrochemical test were conducted to investigate the corrosion protective property of the Zn-Sn Metal Spray system, the Zinc galvanizing system, and the heavy duty coating system. As a result, it was confirmed that the Zn-Sn (65:35) Metal Spray system had very high corrosion protective property through the electrochemical characteristic as comparison with the other anti-corrosion systems and was very effective to prevent steel products from corrosion.

Experimental Evaluation of Weathering Performance for Duplex Coating Systems Combining Thermal Spraying Metals and Painting (금속용사와 도장의 복합피복방식법에 대한 실험적 내후성능평가)

  • Kim, In Tae;Jun, Je Hyong;Cha, Ki Hyuk;Jeong, Young Soo;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.373-382
    • /
    • 2016
  • Painting or thermally sprayed metal coating is often used in corrosion protection of steel structures. In recently, duplex coating system which combines thermally sprayed metals with paint is selected as a new generic type of coatings on steel structures under the highly corrosive environments. In this study, the structural steel specimens were surface treated, thermally sprayed with zinc, zinc-15%aluminum alloy, aluminum and aluminum-5%magnesium alloy, and finally sealing or painted with acrylic urethane. And as a reference specimens, steel specimens were painted with acrylic urethane after surface treatment. Circular defects with 1.0, 3.0 and 5.0 mm in diameters and line defect with 2.0 mm width, which reach the steel substrate were created on all specimens. The specimens were exposed into an environmental testing chamber controlled by the ISO 20340, which is a laboratory cyclic accelerated exposure test condition of spraying/UV/low temperature, for up to 175 days. Based on the corrosion tests, corrosion deterioration from the initial defects were evaluated and weathering performance of the specimens are compared.

An Experimental Study on Construction Efficiency of High-Frequency Arc Metal Spray Machine (고주파 아크 금속용사 장치의 시공성능 평가에 관한 실험적 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • The arc thermal metal spraying method (ATMSM) has been used in Korea to improve the electromagnetic pulse (EMP) shielding effect of building and infrastructure by three machines of MS, KMS and HMS (Metal Spray, Korea Metal Spray, High-frequency Meta Spray). The adhesion ability of sprayed metal was found to be 58.32, 64.66 and 87.62% for MS, KMS and HMS, respectively. The metal sprayed area per hour of MS, KMS and HMS was calculated and found to be 14.3, 19.25 and 22.16㎡/h, respectively. The HMS showed the highest metal spray area attributed to the diameter of metal wire i.e. 1.6mm which sprayed 80 mm with 18 m/min. There was minimum loss of metal and the highest efficiency by HMS compared to others. Therefore, it is suggested to use HMS for metal spraying by ATMSM to enhance the EMP shielding effect.

A Characteristics Surface Modification by Thermal Spraying (용사법에 의한 표면개질 특성)

  • 양병모;박경채
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 1996
  • 재료의 표면개질은 표면층의 조직변화에 대한 개질법과 표면피복에 의한 개질 법으로 나눌 수 있다. 조직변화에 의한 개질법으로는 침탄, 질화, 이온주입 및 금속 확산 등이 있고, 표면피복에 의한 개질법으로는 도장, 도금, 육성용접, 물리증착(PVD) 및 화학증착(CVD) 등이 있는데, 용사법은 표면피복에 의한 개질법에 속한다. 용사기술 은 비교적 최근에 발달된 표면피복 기술로서 그림1과 같이 플라즈마, 가스화염 또는 아크열원을 이용하여 금속 또는 비금속 재료를 용융 혹은 반용융 상태로 모재에 고속 도로 분사하여 충돌 적층시켜 피복하는 공정으로 다른 표면개질기술에 비해서 여러 가지 잇점을 가지고 있다. 이것은 거의 모든 재질의 모재(금속, 세라믹, 유기재료 등) 에 대해 피막의 형성이 가능하고, 용사재료의 종류도 다양하다(금속, 합금, 각종 세라 믹, 플라스틱, 각종 복합재료 등). 또한 노재크기의 제한이 없고, 대형의 재료에 대해 서 한정된 부위의 피복이 가능하며, 모재의 열영향이 적고, 피막의 형성속도가 다른 피막법에 비해 빠른 장점을 가지고 있다. 그 예로 알루미나(Al$_{2}$O$_{3}$)를 피복할 경우 화학증착(CVD)법에 의해서는 피막형성 속도가 약 2 * $10^{-4}$mm/min 인데 비해 용사법에 의해서는 약 7.5 * $10^{-1}$mm/min로 매우크다. 이와같은 많은 장점을 갖고있는 용사법을 이용한 표면개질에 대해 본 기술보고에서 서술하고자 한다.

  • PDF

Experimental Study on the Corrosion Characteristics of Zn and Zn-15Al Coatings Deposited by Plasma Arc Thermal Spray Process in Saline Solution (플라즈마 아크 용사 공법에 의해 도포된 Zn 및 Zn-15Al 금속 코팅의 해수 환경에서 부식 특성에 관한 실험적 연구)

  • Jeong, Hwa-Rang;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.539-550
    • /
    • 2021
  • In this study, Zn and Zn-15Al were coated on general carbon steel by plasma arc metal spraying and then immersed in a 3.5wt.% NaCl solution similar to the seawater environment to evaluate the corrosion resistance properties. Through the surface shape analysis test by SEM and XRD, it was found that the Zn coating was porous and needle-shaped, so the penetration of the electrolyte was easy, and thus the corrosion rate was rapid. On the other hand, the Zn-15Al coating had a uniform and dense shape and was shown to suppress corrosion.

An Electrochemical Evaluation of the Corrosion Properties of the Steel with the Type and the Thickness of Metallizing Coatings (금속용사 코팅제의 종류 및 두께에 따른 강재 내식성의 전기화학적 평가)

  • Kang, Myeong-Sik;Eom, Sung-Hyun;Cho, Yeon-Chul;Ahn, Jae-Woo;Kim, Seong-Soo;Lee, Jeong-Bae
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.55-62
    • /
    • 2016
  • Steel structures exposed to extremely corrosive environment like marine environments and industrial area are generally manufactured by applying various protection treatment to increase their lifetime. Metal spraying is one of the protection methods to overcome some drawbacks of the widely employed technologies. Therefore, lots of research needs to be done to improve the corrosion resistance of steel structures. In this study, the corrosion resistance of steel structures was evaluated with the variation in the type and thickness of metal spray by measuring the corrosion potential and current density. As a raw material for spraying, Zn, Al and their mixture were employed to obtain coating thickness of $30{\sim}100{\mu}m$. Our data indicated that the pure zinc coating with $100{\mu}m$ showed the lowest corrosion potential. In the case of pure Al and Zn 85%-Al 15%, the corrosion potential and current density was decreased compared to pure zinc. It was found that the corrosion potential was decreased with the increase of coating thickness irrespective of the type of the coating.

Thermal Spray Coating

  • 김종영
    • 전기의세계
    • /
    • v.42 no.1
    • /
    • pp.5-11
    • /
    • 1993
  • 금속이나 세라믹 입자를 용사하여 보호피막을 형성하는 기술은 화염을 사용하는 방법에서 시작했으며 용사재료는 분말, 선, 봉의 형태로 공급되었다. 1960년대에 상업적인 plasma 용사장비가 개발되었으며 여기서 사용된 D.C.plasma jet를 이용하여 분말형태의 용사재료를 용융하고 고속으로 피용사테에 용융입자를 분사하여 피용사체면에 충돌시켜 다층의 얇은 피막을 형성한다. 최근(1985년)에는 R.F.(Radio Frequency) Plasma를 이용하여 열전도도가 작은 재료나 산소와 반응성이 큰 재료를 용사하는 방법도 개발되고 있다. 용사피복법은 현재 여러가지 방법이 실용되고 있으며 재료를 용융하는 열원에 따라 분류하면 표1과 같다. 즉 산소와 연료 가스의 혼합에 의한 연소나 폭발에너지를 이용하는 가스식 용사법과 Arc, Plasma등의 전기 에너지를 이용하는 전기식 용사법으로 크게 나눌 수 있다.

  • PDF

Weathering Performance Evaluation of Duplex Coating Systems of Thermal Spraying and Painting using Corrosion Test (부식실험에 의한 금속용사와 도장의 복합피복방식법의 내후성능평가)

  • Kim, In Tae;Kim, Ho Seob;Kien, Dao Duy;Jun, Je Hyeong;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.97-108
    • /
    • 2016
  • Thermally sprayed metals or organic coatings is often used in corrosion protection of steel structures. Duplex coating systems of thermally sprayed metal in combination with organic coating are selected as a new generic type of coatings on steel structures under the highly corrosive environments. In this study, three types of corrosion tests were carried out on four types of thermal sprayed specimens with sealing: zinc, zinc-15%aluminum alloy, aluminum and aluminum-5%magnesium alloy, four types of duplex coated specimens; thermally sprayed metals in combination with paint of acrylic urethane, and painted specimens. NORSOK M-501, Wet/dry cyclic seawater tests and outdoor exposure tests of nine types of specimens were conducted. From the corrosion test results, weathering performance of them were presented.

Experimental Study on Evaluation of Bond Strength after Ozone Treatment and Ozone Resistance of Concrete Metal Spray Coating for Advanced Water Treatment (고도정수처리용 콘크리트 금속용사 피막의 내오존성 및 오존처리 후 부착강도 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • The introduction of advanced water treatment facilities has increased as the conventional purification method cannot remove the substance clearly. However, the internal waterproofing and Anticorrosion materials of the advanced water treatment facility using ozone deteriorate due to the oxidation power of ozone and affects the concrete, which causes a decrease in durability. This study is to evaluate the ozone resistance according to the type of spray metal and the surface treatment method of the coating, and the bond strength after ozone treatment in order to develope a finishing method to prevent deterioration of concrete structure of water treatment facility using metal spraying method as a way to construct metal panel with excellent ozone resistance and chemical resistance by an easier way than the previous. The Experimental results show that spray metal Ti has superior ozone resistance even after spraying. It is considered to be the most suitable method for ozone resistance and bond performance by finishing using Teflon sealing as surface treatment method.

An Experimental Study on the Evaluation of EMP Shielding Performance of Concrete Applied with ATMSM Using Zn-Al Alloy Wire (Zn-Al 합금 선재를 이용한 금속용사 공법 적용 콘크리트의 전자파 차폐 성능 평가에 관한 실험적 연구)

  • Choi, Hyun-Jun;Park, Jin-Ho;Min, Tae-Beom;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.209-217
    • /
    • 2019
  • EMP (Electromagnetic Pulse) usually means High Power Electromagnetic Wave (HPEM). In the case of the shielding plate against the EMP, there is a possibility of deterioration of the electromagnetic wave shielding performance due to the skill of the constructor, bad construction, deformation of the shielding plate at the connection portion (joint portion). The inefficient use of space due to the separation distance is also pointed out as a problem. Therefore, this study aims to derive the optimum electromagnetic shielding condition by applying ATMSM to concrete as a part of securing electromagnetic wave shielding performance with reflection loss against concrete wall. Experimental parameters included concrete wall thickness and application of Zn-Al ATMSM. For the concrete wall, the wall thickness was 100 to 300mm, which is generally applied, and experimental parameters were set for the application of Zn-Al metal spraying method to evaluate electromagnetic shielding performance. Experimental results showed that as the thickness increases, the electromagnetic shielding performance increases due to the increase of absorption loss. In addition, after the application of Zn-Al ATMSM, the average shielding performance increased by 56.68 dB on average, which is considered to be increased by the reflection loss of the ATMSM. In addition, it is considered that the shielding performance will be better than that when the conductive mixed material and the ATMSM are simultaneously applied.