DOI QR코드

DOI QR Code

CAD 모델 기반의 4D CT 데이터 제작 의용공학 융합 프로그램 개발

Development of 4D CT Data Generation Program based on CAD Models through the Convergence of Biomedical Engineering

  • 서정민 (한양대학교 원자력공학과) ;
  • 한민철 (한양대학교 원자력공학과) ;
  • 이현수 (한양대학교 원자력공학과) ;
  • 이세형 (한양대학교 원자력공학과) ;
  • 김찬형 (한양대학교 원자력공학과)
  • Seo, Jeong Min (Department of Nuclear Engineering, Hanyang University) ;
  • Han, Min Cheol (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Hyun Su (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Se Hyung (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
  • 투고 : 2017.03.15
  • 심사 : 2017.04.20
  • 발행 : 2017.04.28

초록

본 연구에서는 Computer-Aided Design (CAD) 모델로부터 4D CT 데이터로 변환하는 프로그램을 개발하였다. 개발된 프로그램의 성능을 확인하기 위해, 공학과 의학의 융합 모델로 인체 호흡을 모사할 수 있는 호흡모사 팬텀을 CAD 기반 프로그램으로 모델링하였으며, 이 모델을 10개의 위상영상을 포함하는 DICOM형태의 4D CT 데이터로 변환하는 CAD2DICOM을 개발하였다. 이후, 제작된 4D CT 데이터의 정확성 및 유효성을 평가하기 위하여 영상의 해상도, 종양의 체적 및 위치 등을 방사선치료계획시스템을 이용하여 평가하였다. 결과적으로, 제작된 4D CT 데이터가 방사선치료계획시스템 상에 정상적으로 인식됨을 확인하였으며, 모든 위상에서 종양 체적은 8.8cc로 차이가 나타나지 않고 종양의 움직임도 설정된 10mm로 나타나 정확히 반영됨을 확인하였다. 본 연구를 통해 개발된 프로그램을 이용하면 실제 4차원 CT 촬영에서 발생할 수 있는 영상의 인공물(허상)이 없는 표준 영상을 획득할 수 있으므로, 향후 움직임에 민감한 4차원 방사선 치료계획연구 및 4차원 방사선 영상 평가연구 등에 활용될 것으로 사료된다.

In the present study, we developed the 4D CT data generation program from CAD-based models. To evaluate the developed program, a CAD-based respiratory motion phantom was designed using CAD software, and converted into 4D CT dataset, which include 10 phases of 3D CTs. The generated 4D CT dataset was evaluated its effectiveness and accuracy through the implementation in radiation therapy planning system (RTPS). Consequently, the results show that the generated 4D CT dataset can be successfully implemented in RTPS, and targets in all phases of 4D CT dataset were moved well according to the user parameters (10 mm) with its stationarily volume (8.8 cc). The developed program, unlike real 4D CT scanner, due to the its ability to make a gold-standard dataset without any artifacts constructed by modality's movements, we believe that this program will be used when the motion effect is important, such as 4D radiation treatment planning and 4D radiation imaging.

키워드

참고문헌

  1. E. C. Halperin, C. A Perez, Luther W. Brady, "Principle and Practice of Radiation Oncology" 5th ed., Wolters Kluwer, 2008.
  2. J. U. Jang, H. S. Lim, M. S. Han, et. al., “Accuracy and radiation exposure from image-guidance in Tomotherapy Hi-Art System,” Journal of Digital Policy & Management, Vol. 11, No. 10, pp. 577-584, 2013.
  3. F. M. Khan, "Treatment Planning in Radiation Oncology", 2nd ed., Wolters Kluwer, 2007.
  4. J. J. Sonke, L. Ziip, P. Remeiier, M. V. Herk, “Respiratory correlated cone beam CT,” Med. Phys., Vol. 32, No. 4, pp. 1176-1186, 2005. https://doi.org/10.1118/1.1869074
  5. M. C-M, Paskalev K., "In-room CT technique for image guided radiation therapy," Med. Dosim., Vol. 31, pp. 30-39, 2006. https://doi.org/10.1016/j.meddos.2005.12.010
  6. Wong J. R., Cheng C. W., Grimm L., "Clinical implementation of the world's first Primaton a combination of CT scanner ad linear accelerator for precise tumor targeting and treatment," Med. Phys., Vol. 17, pp. 271-276, 2001.
  7. T. Matsuura, N. Miyamoto, S. Shimizu et al, "Integration of a real-time tumor monitoring system into gated proton spot-scanning beam therapy: An initial phantom study using patient tumor trajectory data," Medical Physica, Vol. 40, 2013.
  8. S. Shimizu, T. Matsuura, M. Umezawa, et al, "Preliminary analysis for integration of spot-scanning proton beam therapy and real-time imaging and gating", Physica Medica, Vol. 30, 2014.
  9. F. Ammazzalorso, U. Jelen, "A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy" Physics in Medicine and Biology, Vol. 59, 2014.
  10. C. Graeff, R. Luchtenborg, J. G. Eley, st al, "A 4D-Optimization concept for scanned ion beam therapy," Radiotherapy and Oncology, Vol. 109, 2013
  11. Paganetti H., Jiang H., Trofimov A., "4D Monte Carlo simulation of proton beam scanning: modeling of variations in time and space to study the interplay between scanning pattern and time-dependent patient geometry," Phys Med Biol., Vol. 50, 2005.
  12. M. C. Han, Y. S. Yeom, T. T. Nguyen, et. al., "TET2MCNP: A Conversion Program to Implement Tetrahedral-mesh Models in MCNP," Journal of Radiation Protection and Research, Vol. 41, No. 4, 2016.
  13. C. Ong, W. F. A. Verbakel, Johan P. Cuijpers, et al, "Dosimetric impact of interplay effect on Rapidarc lung stereotactic treatment delivery," Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, 2011.
  14. Y. Kang, X. Zhang, J. Y. Chang, et al., "4D proton treatment planning strategy for mobile lung tumors," Int J. Radiation Oncology Biol. Phys., Vol. 67, No. 3, 2007.
  15. H. Paganetti, "Proton Therapy Physics," 1st ed. Taylor and Francis Book, 2012.
  16. S. H. Han, "A Study on the Utilization of Digital Design by Three Dimensional Modeling," Journal of Digital Convergence, Vol. 10, No. 10, pp 447.-456, 2012 https://doi.org/10.14400/JDPM.2012.10.10.447
  17. E. Murena, S. Mhlanga, N. Taisepi, C. Mbohwa, "Design of a Digital Imaging and Machining System Programme for Human Bone Implants," International conference on mining, mineral processing and metallurgical engineering, 2014.
  18. A. D. Muhuri, T. Rajalakshmi, S. J. Pal, "Patient Specific CAD model of Pulmonary artery for Analysis of Arterial Disease," IOSR Journal of Mechanical and Civil Engineering
  19. J. Tabary, S. Marache, S. Valette, et. al., "Realistic X-ray CT simulation of the XCAT phantom with SINDBAD," IEEE, Nuclear Science Symposium Conference, 2009
  20. A. Shapi, R. Sulaiman, M. Khatim Hasan, et. al., "Applications of Computer Aided Design(CAD) in Medical Image Technology," Conference of Engineering and Information Technology 2011.
  21. Z. Wang, I. Aarya, M. Gueorguieva, et. al., "Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom," Int J CARS, Vol. 7, 2012.
  22. F. M. Milian, F. Garcia, M. V. M. Guevara, et. al., "Development of voxel models from 3D surfaces: optimized methodology," Revista Brasileira de Fisca Medica, Vol. 4, No. 3, 2011.
  23. H. R. Jung, K. J. Kim, E. H. Mo, "A Study on the Radiatin Exposure Dose of Brain Perfustion CT Examination a Phantom," Journal of the Korea Convergence Society, Vol. 6, No. 5, 2015.
  24. Y. H. Seoung, "Evaluation of Surface Radiation Dose Reduction and Radiograph Artifact Images in Computed Tomography on the Radiation Convergence Shield by Using Sea-Shells," Journal of the Korea Convergence Society, Vol. 8, No. 2, 2017.