DOI QR코드

DOI QR Code

Li-ion battery anodes from ginkgo leaf-derived nanoporous carbons rich in redox-active heteroatoms

  • Kim, Na Rae (Department of Polymer Science and Engineering, Inha University) ;
  • An, Hong Joo (Department of Polymer Science and Engineering, Inha University) ;
  • Yun, Young Soo (Department of Chemical Engineering, Kangwon National University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • Received : 2016.09.09
  • Accepted : 2017.02.13
  • Published : 2017.04.30

Abstract

Keywords

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). https://doi.org/10.1038/35104644.
  2. Armand M, Tarascon JM. Building better batteries. Nature, 451, 652 (2008). https://doi.org/10.1038/451652a.
  3. Rahman MA, Wong YC, Song G, Wen C. A review on porous negative electrodes for high performance lithium-ion batteries. J Porous Mater, 22, 1313 (2015). https://doi.org/10.1007/s10934-015-0010-1.
  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b.
  5. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 47, 2930 (2008). https://doi.org/10.1002/anie.200702505.
  6. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 4, 366 (2005). https://doi.org/10.1038/nmat1368.
  7. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 20, 2878 (2008). https://doi.org/10.1002/adma.200800627.
  8. Aurbach D, Ein-Eli Y. The study of Li-graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc, 142, 1746 (1995). https://doi.org/10.1149/1.2044188.
  9. Nishi Y. Lithium ion secondary batteries: past 10 years and the future. J Power Sources, 100, 101 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4.
  10. Zhang J, Guo B, Yang Y, Shen W, Wang Y, Zhou X, Wu H, Guo S. Large scale production of nanoporous graphene sheets and their application in lithium ion battery. Carbon, 84, 469 (2015). https://doi.org/10.1016/j.carbon.2014.12.039.
  11. Vu A, Qian Y, Stein A. Porous electrode materials for lithiumion batteries: how to prepare them and what makes them special. Adv Energy Mater, 2, 1056 (2012). https://doi.org/10.1002/aenm.201200320.
  12. Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 4, 2682 (2011). https://doi.org/10.1039/c0ee00699h.
  13. Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metalorganic framework. Nat Commun, 5, 5261 (2014). https://doi.org/10.1038/ncomms6261.
  14. Guo W, Li X, Xu J, Liu HK, Ma J, Dou SX. Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim Acta, 188, 414 (2016). https://doi.org/10.1016/j.electacta.2015.12.045.
  15. Kim NR, Yun YS, Song MY, Hong SJ, Kang M, Leal C, Park YW, Jin HJ. Citrus-peel-derived, nanoporous carbon nanosheets containing redox-active heteroatoms for sodium-ion storage. ACS Appl Mater Interfaces, 8, 3175 (2016). https://doi.org/10.1021/acsami.5b10657.
  16. Yun YS, Kim DH, Hong SJ, Park MH, Park YW, Kim BH, Jin HJ, Kang K. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage. Nanoscale, 7, 15051 (2015). https://doi.org/10.1039/c5nr04231c.
  17. Global forest resources assessment 2015: how are the world's forests changing? Available from: http://www.fao.org/forest-resources-assessment/en/.
  18. Sun X, Wang X, Feng N, Qiao L, Li X, He D. A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J Anal Appl Pyrolysis, 100, 181 (2013). https://doi.org/10.1016/j.jaap.2012.12.016.
  19. Han SW, Jung DW, Jeong JH, Oh ES. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J, 254, 597 (2014). https://doi.org/10.1016/j.cej.2014.06.021.
  20. Zhang Y, Zhang F, Li GD, Chen JS. Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries. Mater Lett, 61, 5209 (2007). https://doi.org/10.1016/j.matlet.2007.04.032.
  21. Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Fish scale derived nitrogen doped hierarchical porous carbon: a high rate performing anode for lithium ion cell. Electrochim Acta, 182, 1 (2015). https://doi.org/10.1016/j.electacta.2015.08.096.
  22. Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. J Mater Chem, 22, 23710 (2012). https://doi.org/10.1039/C2JM34066F.
  23. Yun YS, Cho SY, Kim H, Jin HJ, Kang K. Ultra-thin hollow carbon nanospheres for pseudocapacitive sodium-ion storage. ChemElectroChem, 2, 359 (2015). https://doi.org/10.1002/celc.201402359.
  24. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta, 55, 3909 (2010). https://doi.org/10.1016/j.electacta.2010.02.025.
  25. Yun YS, Park KY, Lee B, Cho SY, Park YU, Hong SJ, Kim BH, Gwon H, kim H, Lee S, Park YW, Jin HJ, Kang K. Sodium-ion storage in pyroprotein-based carbon nanoplates. Adv Mater, 27, 6914 (2015). https://doi.org/10.1002/adma.201502303.
  26. Ding L, Chen J, Dong B, Xi Y, Shi L, Liu W, Cao L. Organic macromolecule assisted synthesis of ultralong $carbon@TiO_2$ nanotubes for high performance lithium-ion batteries. Electrochim Acta, 200, 97 (2016). https://doi.org/10.1016/j.electacta.2016.03.180.
  27. Li X, Geng D, Zhang Y, Meng X, Li R, Sun X. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun, 13, 822 (2011). https://doi.org/10.1016/j.elecom.2011.05.012.