DOI QR코드

DOI QR Code

Mechanical and electrical properties of epoxy resin/epoxidized castor oil/carbon fiber cloth composites

  • Jin, Fan-Long (Department of Polymer Materials, Jilin Institute of Chemical Technology) ;
  • Zhang, Heng (Department of Polymer Materials, Jilin Institute of Chemical Technology) ;
  • Yao, Shan-Shan (Department of Polymer Materials, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2017.01.13
  • Accepted : 2017.01.21
  • Published : 2017.04.30

Abstract

Keywords

References

  1. Brocks T, Cioffi MOH, Voorwald HJC. Effect of fiber surface on flexural strength in carbon fabric reinforced epoxy composites. Appl Surf Sci, 274, 210 (2013). https://doi.org/10.1016/j.apsusc.2013.03.018.
  2. Xu Z, Chen L, Huang Y, Li J, Wu X, Li X, Jiao Y. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur Polym J, 44, 494 (2008). https://doi.org/10.1016/j.eurpolymj.2007.11.021.
  3. Jin FL, Lee SY, Park SJ. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett, 14, 76 (2013). https://doi.org/10.5714/CL.2013.14.2.076.
  4. Guo H, Huang Y, Liu L, Shi X. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites. Mater Des, 31, 1186 (2010). https://doi.org/10.1016/j.matdes.2009.09.034.
  5. Jin FL, Park SJ. Preparation and characterization of carbon fiberreinforced thermosetting composites: a review. Carbon Lett, 16, 67 (2015). https://doi.org/10.5714/CL.2015.16.2.067.
  6. Kandare E, Khatibi AA, Yoo S, Wang R, Ma J, Olivier P, Gleizes N, Wang CH. Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos Part A Appl Sci Manuf, 69, 72 (2015). https://doi.org/10.1016/j.compositesa.2014.10.024.
  7. Kwon DJ, Wang ZJ, Choi JY, Shin PS, DeVries KL, Park JM. Interfacial evaluation of carbon fiber/epoxy composites using electrical resistance measurements at room and a cryogenic temperature. Compos Part A Appl Sci Manuf, 72, 160 (2015). https://doi.org/10.1016/j.compositesa.2015.02.007.
  8. Liu Y, Liu J, Jiang Z, Tang T. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: synergistic effect of phenol and KOH on the decomposition efficiency. Polym Degrad Stab, 97, 214 (2012). https://doi.org/10.1016/j.polymdegradstab.2011.12.028.
  9. Yao L, Li M, Wu Q, Dai Z, Gu Y, Li Y, Zhang Z. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy. Appl Surf Sci, 263, 326 (2012). https://doi.org/10.1016/j.apsusc.2012.09.054.
  10. Ma Q, Gu Y, Li M, Wang S, Zhang Z. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite. Appl Surf Sci, 379, 199 (2016). https://doi.org/10.1016/j.apsusc.2016.04.075.
  11. Li M, Liu H, Gu Y, Li Y, Zhang Z. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments. Appl Surf Sci, 288, 666 (2014). https://doi.org/10.1016/j.apsusc.2013.10.093.
  12. Irshidat MR, Al-Saleh MH, Al-Shoubaki M. Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Compos Struct, 134, 523 (2015). https://doi.org/10.1016/j.compstruct.2015.08.108.
  13. Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G, Zheng G, Fang W, Yang X. Dispersion stability of functionalized MWCNT in the epoxy-amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Mater Des, 94, 392 (2016). https://doi.org/10.1016/j.matdes.2016.01.062.
  14. Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos Part B Eng, 42, 1257 (2011). https://doi.org/10.1016/j.compositesb.2011.02.005.
  15. Fang C, Wang J, Zhang T. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent. Appl Surf Sci, 321, 1 (2014). https://doi.org/10.1016/j.apsusc.2014.09.170.
  16. Wang C, Ji X, Roy A, Silberschmidt VV, Chen Z. Shear strength and fracture toughness of carbon fibre/epoxy interface: effect of surface treatment. Mater Des, 85, 800 (2015). https://doi.org/10.1016/j.matdes.2015.07.104.
  17. Borooj MB, Shoushtari AM, Haji A, Sabet EN. Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology. Compos Sci Technol, 128, 215 (2016). https://doi.org/10.1016/j.compscitech.2016.03.020.
  18. Zhang J, Deng S, Wang Y, Ye L, Zhou L, Zhang Z. Effect of nanoparticles on interfacial properties of carbon fibre–epoxy composites. Compos Part A Appl Sci Manuf, 55, 35 (2013). https://doi.org/10.1016/j.compositesa.2013.08.005.
  19. Dai Z, Shi F, Zhang B, Li M, Zhang Z. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl Surf Sci, 257, 6980 (2011). https://doi.org/10.1016/j.apsusc.2011.03.047.
  20. He H, Li K, Gao F. Improvement of the bonding between carbon fibers and an epoxy matrix using a simple sizing process with a novolac resin. Constr Build Mater, 116, 87 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.125.
  21. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG. A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol, 71, 1089 (2011). https://doi.org/10.1016/j.compscitech.2011.03.014.
  22. Sprenger S, Kothmann MH, Altstaedt V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos Sci Technol, 105, 86 (2014). https://doi.org/10.1016/j.compscitech.2014.10.003.
  23. Jin FL, Park SJ. Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polym Int, 57, 577 (2008). https://doi.org/10.1002/pi.2280.
  24. Jin FL, Park SJ. Fracture toughness of difunctional epoxy resin/thermally latent initiator system modified with polyesters. J Ind Eng Chem, 14, 564 (2008). https://doi.org/10.1016/j.jiec.2008.04.003.
  25. Chen JL, Jin FL, Park SJ. Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-$CaCO_3$ ternary systems. Macromol Res, 18, 862 (2010). https://doi.org/10.1007/s13233-010-0911-4.
  26. Zhu L, Jin FL, Park SJ. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and $Al_2O_3$ nanoparticles. Bull Korean Chem Soc, 33, 2513 (2012). https://doi.org/10.5012/bkcs.2012.33.8.2513.
  27. Park SJ, Jin FL, Lee JR, Shin JS. Cationic polymerization and physicochemical properties of a biobased epoxy resin initiated by thermally latent catalysts. Eur Polym J, 41, 231 (2005). https://doi.org/10.1016/j.eurpolymj.2004.09.011.
  28. Zhao JL, Fu T, Han Y, Xu KW. Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Mater Lett, 58, 163 (2004). https://doi.org/10.1016/S0167-577X(03)00437-3.
  29. Yadav SN, Kumar V, Verma SK. Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave. Mater Sci Eng B, 132, 108 (2006). https://doi.org/10.1016/j.mseb.2006.02.026.
  30. Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiberreinforced epoxy matrix composites. J Colloid Interface Sci, 228, 287 (2000). https://doi.org/10.1006/jcis.2000.6953.
  31. Zhao F, Huang Y. Improved interfacial properties of carbon fiber/epoxy composites through grafting polyhedral oligomeric silsesquioxane on carbon fiber surface. Mater Lett, 64, 2742 (2010). https://doi.org/10.1016/j.matlet.2010.08.074.
  32. Dong W, Liu HC, Park SJ, Jin FL. Fracture toughness improvement of epoxy resins with short carbon fibers. J Ind Eng Chem, 20, 1220 (2014). https://doi.org/10.1016/j.jiec.2013.06.053.
  33. Tsotra P, Friedrich K. Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites. Compos Part A Appl Sci Manuf, 34, 75 (2003). https://doi.org/10.1016/S1359-835X(02)00181-1.
  34. Ashrafi B, Guan J, Mirjalili V, Zhang Y, Chun L, Hubert P, Simard B, Kingston CT, Bourne O, Johnston A. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos Sci Technol, 71, 1569 (2011). https://doi.org/10.1016/j.compscitech.2011.06.015.
  35. Jin FL, Park SJ. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess. Carbon Lett, 12, 57 (2011). https://doi.org/10.5714/CL.2011.12.2.057.
  36. Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). https://doi.org/10.5714/CL.2012.14.1.001.