DOI QR코드

DOI QR Code

Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

  • Jeon, Se Jin (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Kim, Boseong (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Ryu, Byeol (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Kim, Eunji (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Lee, Sunhee (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Jang, Dae Sik (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Ryu, Jong Hoon (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University)
  • Received : 2016.03.15
  • Accepted : 2016.07.28
  • Published : 2017.05.01

Abstract

To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-${\zeta}$ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-${\zeta}$ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.

Keywords

References

  1. Benvenga, M. J. and Spaulding, T. C. (1988) Amnesic effect of the novel anticonvulsant MK-801. Pharmacol. Biochem. Behav. 30, 205-207. https://doi.org/10.1016/0091-3057(88)90445-5
  2. Bliss, T. V. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39. https://doi.org/10.1038/361031a0
  3. Burns, A. and Iliffe, S. (2009) Dementia. BMJ 338, b75. https://doi.org/10.1136/bmj.b75
  4. Butelman, E. R. (1990) The effect of NMDA antagonists in the radial arm maze task with an interposed delay. Pharmacol. Biochem. Behav. 35, 533-536. https://doi.org/10.1016/0091-3057(90)90285-P
  5. Cai, L. and Wu, C. D. (1996) Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod. 59, 987-990. https://doi.org/10.1021/np960451q
  6. Camp, R. M. and Johnson, J. D. (2015) Repeated stressor exposure enhances contextual fear memory in a beta-adrenergic receptor-dependent process and increases impulsivity in a non-beta receptor-dependent fashion. Physiol. Behav. 150, 64-68. https://doi.org/10.1016/j.physbeh.2015.03.008
  7. Cohen-Matsliah, S. I., Brosh, I., Rosenblum, K. and Barkai, E. (2007) A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes. J. Neurosci. 27, 12584-12589. https://doi.org/10.1523/JNEUROSCI.3728-07.2007
  8. Collingridge, G. L., Volianskis, A., Bannister, N., France, G., Hanna, L., Mercier, M., Tidball, P., Fang, G., Irvine, M. W., Costa, B. M., Monaghan, D. T., Bortolotto, Z. A., Molnar, E., Lodge, D. and Jane, D. E. (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64, 13-26. https://doi.org/10.1016/j.neuropharm.2012.06.051
  9. Coultrap, S. J. and Bayer, K. U. (2012) CaMKII regulation in information processing and storage. Trends Neurosci. 35, 607-618. https://doi.org/10.1016/j.tins.2012.05.003
  10. Danysz, W., Wroblewski, J. T. and Costa, E. (1988) Learning impairment in rats by N-methyl-D-aspartate receptor antagonists. Neuropharmacology 27, 653-656. https://doi.org/10.1016/0028-3908(88)90189-X
  11. de Lima, M. N., Laranja, D. C., Bromberg, E., Roesler, R. and Schroder, N. (2005) Pre- or post-training administration of the NMDA receptor blocker MK-801 impairs object recognition memory in rats. Behav. Brain Res. 156, 139-143. https://doi.org/10.1016/j.bbr.2004.05.016
  12. Deisseroth, K. and Tsien, R. W. (2002) Dynamic multiphosphorylation passwords for activity-dependent gene expression. Neuron 34, 179-182. https://doi.org/10.1016/S0896-6273(02)00664-5
  13. Dong, Z., Bai, Y., Wu, X., Li, H., Gong, B., Howland, J. G., Huang, Y., He, W., Li, T. and Wang, Y. T. (2013) Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology 64, 65-73. https://doi.org/10.1016/j.neuropharm.2012.06.027
  14. Dubue, J. D., McKinney, T. L., Treit, D. and Dickson, C. T. (2015) Intrahippocampal Anisomycin Impairs Spatial Performance on the Morris Water Maze. J. Neurosci. 35, 11118-11124. https://doi.org/10.1523/JNEUROSCI.1857-15.2015
  15. Ellman, G. L., Courtney, K. D., Andres, V., Jr. and Feather-Stone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  16. Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M. and Greenberg, M. E. (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031-1047. https://doi.org/10.1016/S0896-6273(00)80395-5
  17. Gonzalez, G. A. and Montminy, M. R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675-680. https://doi.org/10.1016/0092-8674(89)90013-5
  18. Gonzalez, G. A., Yamamoto, K. K., Fischer, W. H., Karr, D., Menzel, P., Biggs, W., 3rd, Vale, W. W. and Montminy, M. R. (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337, 749-752. https://doi.org/10.1038/337749a0
  19. Izquierdo, I. and Medina, J. H. (1993) Role of the amygdala, hippocampus and entorhinal cortex in memory consolidation and expression. Braz. J. Med. Biol. Res. 26, 573-589.
  20. Izquierdo, I. and Medina, J. H. (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68, 285-316. https://doi.org/10.1006/nlme.1997.3799
  21. Jentsch, J. D. and Roth, R. H. (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20, 201-225. https://doi.org/10.1016/S0893-133X(98)00060-8
  22. Jung, I. H., Lee, H. E., Park, S. J., Ahn, Y. J., Kwon, G., Woo, H., Lee, S. Y., Kim, J. S., Jo, Y. W., Jang, D. S., Kang, S. S. and Ryu, J. H. (2014) Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol. Biochem. Behav. 120, 88-94. https://doi.org/10.1016/j.pbb.2014.02.015
  23. Jung, J. W., Ahn, N. Y., Oh, H. R., Lee, B. K., Lee, K. J., Kim, S. Y., Cheong, J. H. and Ryu, J. H. (2006) Anxiolytic effects of the aqueous extract of Uncaria rhynchophylla. J. Ethnopharmacol. 108, 193-197. https://doi.org/10.1016/j.jep.2006.05.019
  24. Kawashima, T., Okuno, H., Nonaka, M., Adachi-Morishima, A., Kyo, N., Okamura, M., Takemoto-Kimura, S., Worley, P. F. and Bito, H. (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc. Natl. Acad. Sci. U.S.A. 106, 316-321. https://doi.org/10.1073/pnas.0806518106
  25. Kim, D. H., Jeon, S. J., Son, K. H., Jung, J. W., Lee, S., Yoon, B. H., Lee, J. J., Cho, Y. W., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2007a) The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol. Learn. Mem. 87, 536-546. https://doi.org/10.1016/j.nlm.2006.11.005
  26. Kim, D. H., Kim D. Y., Kim, Y. C., Jung, J. W., Lee, S., Yoon, B. H., Cheong, J. H., Kim, Y. S., Kang, S. S., Ko, K. H. and Ryu, J. H. (2007b) Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice. Life Sci. 80, 1944-1950. https://doi.org/10.1016/j.lfs.2007.02.023
  27. Kim, D. H., Kim, S., Jeon, S. J., Son, K. H., Lee, S., Yoon, B. H., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2009) Tanshinone I enhances learning and memory, and ameliorates memory impairment in mice via the extracellular signal-regulated kinase signalling pathway. Br. J. Pharmacol. 158, 1131-1142. https://doi.org/10.1111/j.1476-5381.2009.00378.x
  28. Lee, H. E., Lee, S. Y., Kim, J. S., Park, S. J., Kim, J. M., Lee, Y. W., Jung, J. M., Kim, D. H., Shin, B. Y., Jang, D. S., Kang, S. S. and Ryu, J. H. (2013) Ethanolic extract of the seed of zizyphus jujuba var. spinosa ameliorates cognitive impairment induced by cholinergic blockade in mice. Biomol. Ther. (Seoul) 21, 299-306. https://doi.org/10.4062/biomolther.2013.043
  29. Levin, E. D., Tizabi, Y., Rezvani, A. H., Caldwell, D. P., Petro, A. and Getachew, B. (2005) Chronic nicotine and dizocilpine effects on regionally specific nicotinic and NMDA glutamate receptor binding. Brain Res. 1041, 132-142. https://doi.org/10.1016/j.brainres.2005.01.104
  30. Lisman, J., Yasuda, R. and Raghavachari, S. (2012) Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169-182. https://doi.org/10.1038/nrn3192
  31. Liu, G., Liu, C. and Zhang, X. N. (2015) Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats. Mol. Med. Rep. 12, 3297-3308. https://doi.org/10.3892/mmr.2015.3803
  32. Liu, X., Hong, S. I., Park, S. J., Dela Pena, J. B., Che, H., Yoon, S. Y., Kim, D. H., Kim, J. M., Cai, M., Risbrough, V., Geyer, M. A., Shin, C. Y., Cheong, J. H., Park, H., Lew, J. H. and Ryu, J. H. (2013) The ameliorating effects of 5,7-dihydroxy-6-methoxy-2(4-phenoxyphenyl)-4H-chromene-4-one, an oroxylin A derivative, against memory impairment and sensorimotor gating deficit in mice. Arch. Pharm. Res. 36, 854-863. https://doi.org/10.1007/s12272-013-0106-6
  33. Lynch, M. A. (2004) Long-term potentiation and memory. Physiol. Rev. 84, 87-136. https://doi.org/10.1152/physrev.00014.2003
  34. McGuffin, M., Hobbs, C., Upton, R. and Goldberg, A. (1997) Botanical Safety Handbook, p. 168. American Herbal Products Association (AHPA), New York.
  35. May-Simera, H. and Levin, E. D. (2003) NMDA systems in the amygdala and piriform cortex and nicotinic effects on memory function. Brain Res. Cogn. Brain Res. 17, 475-483. https://doi.org/10.1016/S0926-6410(03)00163-0
  36. Moriguchi, S., Oomura, Y., Shioda, N., Han, F., Hori, N., Aou, S. and Fukunaga, K. (2011) $Ca^{2+}$/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy. Mol. Cell. Neurosci. 46, 101-107. https://doi.org/10.1016/j.mcn.2010.08.010
  37. Morris, R. G., Anderson, E., Lynch, G. S. and Baudry, M. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774-776. https://doi.org/10.1038/319774a0
  38. Morris, R. G., Steele, R. J., Bell, J. E. and Martin, S. J. (2013) N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. Eur. J. Neurosci. 37, 700-717. https://doi.org/10.1111/ejn.12086
  39. Sacktor, T. C., Osten, P., Valsamis, H., Jiang, X., Naik, M. U. and Sublette, E. (1993) Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc. Natl. Acad. Sci. U.S.A. 90, 8342-8346. https://doi.org/10.1073/pnas.90.18.8342
  40. Sanderson, D. J., Good, M. A., Skelton, K., Sprengel, R., Seeburg, P. H., Rawlins, J. N. and Bannerman, D. M. (2009) Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for a dual-process memory model. Learn. Mem. 16, 379-386. https://doi.org/10.1101/lm.1339109
  41. Schliebs, R. and Arendt, T. (2011) The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555-563. https://doi.org/10.1016/j.bbr.2010.11.058
  42. Schneider, L. S. (2000) A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer's disease. Dialogues Clin. Neurosci. 2, 111-128.
  43. Scholtzova, H., Wadghiri, Y. Z., Douadi, M., Sigurdsson, E. M., Li, Y. S., Quartermain, D., Banerjee, P. and Wisniewski, T. (2008) Memantine leads to behavioral improvement and amyloid reduction in Alzheimer's-disease-model transgenic mice shown as by micromagnetic resonance imaging. J. Neurosci. Res. 86, 2784-2791. https://doi.org/10.1002/jnr.21713
  44. Sheng, M., Thompson, M. A. and Greenberg, M. E. (1991) CREB: a $Ca^{2+}$-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-1430. https://doi.org/10.1126/science.1646483
  45. Silva, A. J., Kogan, J. H., Frankland, P. W. and Kida, S. (1998) CREB and memory. Annu. Rev. Neurosci. 21, 127-148. https://doi.org/10.1146/annurev.neuro.21.1.127
  46. Silva, A. J., Paylor, R., Wehner, J. M. and Tonegawa, S. (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206-211. https://doi.org/10.1126/science.1321493
  47. Sutton, G. and Chandler, L. J. (2002) Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures. J. Neurochem. 82, 1097-1105.
  48. Swain, H. A., Sigstad, C. and Scalzo, F. M. (2004) Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol. Teratol. 26, 725-729. https://doi.org/10.1016/j.ntt.2004.06.009
  49. Sweatt, J. D., Atkins, C. M., Johnson, J., English, J. D., Roberson, E. D., Chen, S. J., Newton, A. and Klann, E. (1998) Protected-site phosphorylation of protein kinase C in hippocampal long-term potentiation. J. Neurochem. 71, 1075-1085.
  50. Tsien, J. Z., Huerta, P. T. and Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-1338. https://doi.org/10.1016/S0092-8674(00)81827-9
  51. Tune, L. E. and Sunderland, T. (1998) New cholinergic therapies: treatment tools for the psychiatrist. J. Clin. Psychiatry 59 Suppl 13, 31-35. https://doi.org/10.4088/JCP.v59n0107d
  52. van Zundert, B., Zhao, J. P. and Constantine-Paton, M. (2010) Synaptic drive at developing synapses: transient upregulation of kainate receptors. Dev. Neurobiol. 70, 737-750. https://doi.org/10.1002/dneu.20807
  53. Vasconcellos, M. C., Montenegro, R. C., Militao, G. C., Fonseca, A. M., Pessoa, O. D., Lemos, T. L., Pessoa, C., Moraes, M. O. and Costa-Lotufo, L. V. (2005) Bioactivity of biflorin, a typical o-naphthoquinone isolated from Capraria biflora L. Z. Naturforsch., C, J. Biosci. 60, 394-398.
  54. Volk, L. J., Bachman, J. L., Johnson, R., Yu, Y. and Huganir, R. L. (2013) PKM-zeta is not required for hippocampal synaptic plasticity, learning and memory. Nature 493, 420-423. https://doi.org/10.1038/nature11802
  55. Wisintainer, G. G., Simoes, E. R., Lemos, T. L., Moura, S., Souza, L. G., Fonseca, A. M., Moraes, M. O., Pessoa, C., Roesch-Ely, M. and Henriques, J. A. (2014) Biflorin: an o-naphthoquinone of clinical significance. An. Acad. Bras. Cienc. 86, 1907-1914. https://doi.org/10.1590/0001-3765201420140085
  56. Yamada, K., Shimizu, M., Kawabe, K. and Ichitani, Y. (2015) Hippocampal AP5 treatment impairs both spatial working and reference memory in radial maze performance in rats. Eur. J. Pharmacol. 758, 137-141. https://doi.org/10.1016/j.ejphar.2015.03.080
  57. Zheng, F., Luo, Y. and Wang, H. (2009) Regulation of brain-derived neurotrophic factor-mediated transcription of the immediate early gene Arc by intracellular calcium and calmodulin. J. Neurosci. Res. 87, 380-392. https://doi.org/10.1002/jnr.21863

Cited by

  1. SKF83959 Has Protective Effects in the Scopolamine Model of Dementia vol.41, pp.3, 2017, https://doi.org/10.1248/bpb.b17-00877
  2. Aster glehni Extract Ameliorates Scopolamine-Induced Cognitive Impairment in Mice vol.22, pp.7, 2019, https://doi.org/10.1089/jmf.2018.4302
  3. Influence of Ethanolic Plant Extracts on Morphology and Size Distribution of Sol‐Gel Prepared TiO 2 Nanoparticles vol.6, pp.16, 2017, https://doi.org/10.1002/slct.202100494