DOI QR코드

DOI QR Code

Molecular Signature That Determines the Acute Tolerance of G Protein-Coupled Receptors

  • Min, Chengchun (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Zhang, Xiaohan (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Zheng, Mei (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Sun, Ningning (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Acharya, Srijan (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Zhang, Xiaowei (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Kim, Kyeong-Man (Pharmacology Laboratory, College of Pharmacy, Chonnam National University)
  • Received : 2016.09.01
  • Accepted : 2016.11.15
  • Published : 2017.05.01

Abstract

Desensitization and acute tolerance are terms used to describe the attenuation of receptor responsiveness by prolonged or intermittent exposure to an agonist. Unlike desensitization of G protein-coupled receptors (GPCRs), which is commonly explained by steric hindrance caused by the ${\beta}$-arrestins that are translocated to the activated receptors, molecular mechanisms involved in the acute tolerance of GPCRs remain unclear. Our studies with several GPCRs and related mutants showed that the acute tolerance of GPCRs could occur independently of agonist-induced ${\beta}$-arrestin translocation. A series of co-immunoprecipitation experiments revealed a correlation between receptor tolerance and interactions among receptors, ${\beta}$-arrestin2, and $G{\beta}{\gamma}$. $G{\beta}{\gamma}$ displayed a stable interaction with receptors and ${\beta}$-arrestin2 in cells expressing GPCRs that were prone to undergo tolerance compared to the GPCRs that were resistant to acute tolerance. Strengthening the interaction between $G{\beta}{\gamma}$ and ${\beta}$-arrestin rendered the GPCRs to acquire the tendency of acute tolerance. Overall, stable interaction between the receptor and $G{\beta}{\gamma}$ complex is required for the formation of a complex with ${\beta}$-arrestin, and determines the potential of a particular GPCR to undergo acute tolerance. Rather than turning off the signal, ${\beta}$-arrestins seem to contribute on continuous signaling when they are in the context of complex with receptor and $G{\beta}{\gamma}$.

Keywords

References

  1. Benovic, J. L., Kuhn, H., Weyand, I., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1987) Functional desensitization of the isolated $\beta$-adrenergic receptor by the $\beta$-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein) Proc. Natl. Acad. Sci. U.S.A. 84, 8879-8882. https://doi.org/10.1073/pnas.84.24.8879
  2. Benovic, J. L., Strasser, R. H., Caron, M. G. and Lefkowitz, R. J. (1986) $\beta$-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. U.S.A. 83, 2797-2801. https://doi.org/10.1073/pnas.83.9.2797
  3. Bizzozero, O. A. (1997) The mechanism and functional roles of protein palmitoylation in the nervous system. Neuropediatrics 28, 23-26. https://doi.org/10.1055/s-2007-973660
  4. Bornancin, F. and Parker, P. J. (1997) Phosphorylation of protein kinase $C-{\alpha}$ on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J. Biol. Chem. 272, 3544-3549. https://doi.org/10.1074/jbc.272.6.3544
  5. Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010a) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine $D_2$ receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
  6. Cho, D. I., Beom, S., Van Tol, H. H., Caron, M. G. and Kim, K. M. (2006) Characterization of the desensitization properties of five dopamine receptor subtypes and alternatively spliced variants of dopamine $D_2$ and $D_4$ receptors. Biochem. Biophys. Res. Commun. 350, 634-640. https://doi.org/10.1016/j.bbrc.2006.09.090
  7. Cho, D. I., Zheng, M. and Kim, K. M. (2010b) Current perspectives on the selective regulation of dopamine $D_2$ and $D_3$ receptors. Arch. Pharm. Res. 33, 1521-1538. https://doi.org/10.1007/s12272-010-1005-8
  8. Cho, E. Y., Cho, D. I., Park, J. H., Kurose, H., Caron, M. G. and Kim, K. M. (2007) Roles of protein kinase C and actin-binding protein 280 in the regulation of intracellular trafficking of dopamine $D_3$ receptor. Mol. Endocrinol. 21, 2242-2254. https://doi.org/10.1210/me.2007-0202
  9. Feinstein, T. N., Yui, N., Webber, M. J., Wehbi, V. L., Stevenson, H. P., King, J. D., Jr., Hallows, K. R., Brown, D., Bouley, R. and Vilardaga, J. P. (2013) Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J. Biol. Chem. 288, 27849-27860. https://doi.org/10.1074/jbc.M112.445098
  10. Ferguson, S. S., Downey, W. E., 3rd, Colapietro, A. M., Barak, L. S., Menard, L. and Caron, M. G. (1996) Role of $\beta$-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science, 271, 363-366. https://doi.org/10.1126/science.271.5247.363
  11. Giros, B., Martres, M. P., Sokoloff, P. and Schwartz, J. C. (1990) Gene cloning of human dopaminergic $D_3$ receptor and identification of its chromosome. C. R. Acad. Sci. III, Sci. Vie 311, 501-508.
  12. Hausdorff, W. P., Caron, M. G. and Lefkowitz, R. J. (1990) Turning off the signal: desensitization of $\beta$-adrenergic receptor function. FASEB J. 4, 2881-2889. https://doi.org/10.1096/fasebj.4.11.2165947
  13. Hepler, J. R. and Gilman, A. G. (1992) G proteins. Trends Biochem. Sci. 17, 383-387. https://doi.org/10.1016/0968-0004(92)90005-T
  14. Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine $D_2$ and $D_3$ receptors by G protein-coupled receptor kinases and $\beta$-arrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
  15. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1990) $\beta$-Arrestin: a protein that regulates $\beta$-adrenergic receptor function. Science 248, 1547-1550. https://doi.org/10.1126/science.2163110
  16. Lohse, M. J., Lefkowitz, R. J., Caron, M. G. and Benovic, J. L. (1989) Inhibition of $\beta$-adrenergic receptor kinase prevents rapid homologous desensitization of ${\beta}_2$-adrenergic receptors. Proc. Natl. Acad. Sci. U.S.A. 86, 3011-3015. https://doi.org/10.1073/pnas.86.9.3011
  17. Mahon, M. J., Bonacci, T. M., Divieti, P. and Smrcka, A. V. (2006) A docking site for G protein ${\beta}{\gamma}$ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways. Mol. Endocrinol. 20, 136-146. https://doi.org/10.1210/me.2005-0169
  18. Min, C., Zheng, M., Zhang, X., Caron, M. G. and Kim, K. M. (2013) Novel roles for $\beta$-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine $D_3$ receptors. Br. J. Pharmacol. 170, 1112-1129. https://doi.org/10.1111/bph.12357
  19. Nobles, K. N., Xiao, K., Ahn, S., Shukla, A. K., Lam, C. M., Rajagopal, S., Strachan, R. T., Huang, T. Y., Bressler, E. A., Hara, M. R., Shenoy, S. K., Gygi, S. P. and Lefkowitz, R. J. (2011) Distinct phosphorylation sites on the ${\beta}_2$-adrenergic receptor establish a barcode that encodes differential functions of $\beta$-arrestin. Sci. Signal. 4, ra51.
  20. Pitcher, J. A., Inglese, J., Higgins, J. B., Arriza, J. L., Casey, P. J., Kim, C., Benovic, J. L., Kwatra, M. M., Caron, M. G. and Lefkowitz, R. J. (1992) Role of ${\beta}{\gamma}$ subunits of G proteins in targeting the $\beta$-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264-1267. https://doi.org/10.1126/science.1325672
  21. Robinson, S. W. and Caron, M. G. (1997) Selective inhibition of adenylyl cyclase type V by the dopamine $D_3$ receptor. Mol. Pharmacol. 52, 508-514. https://doi.org/10.1124/mol.52.3.508
  22. Shenoy, S. K. and Lefkowitz, R. J. (2005) Receptor-specific ubiquitination of $\beta$-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J. Biol. Chem. 280, 15315-15324. https://doi.org/10.1074/jbc.M412418200
  23. Shiina, T., Kawasaki, A., Nagao, T. and Kurose, H. (2000) Interaction with $\beta$-arrestin determines the difference in internalization behavor between ${\beta}_1$- and ${\beta}_2$-adrenergic receptors. J. Biol. Chem. 275, 29082-29090. https://doi.org/10.1074/jbc.M909757199
  24. Vickery, R. G. and von Zastrow, M. (1999) Distinct dynamin-dependent and -independent mechanisms target structurally homologous dopamine receptors to different endocytic membranes. J. Cell Biol. 144, 31-43. https://doi.org/10.1083/jcb.144.1.31
  25. Violin, J. D., DiPilato, L. M., Yildirim, N., Elston, T. C., Zhang, J. and Lefkowitz, R. J. (2008) ${\beta}_2$-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem. 283, 2949-2961. https://doi.org/10.1074/jbc.M707009200
  26. Wehbi, V. L., Stevenson, H. P., Feinstein, T. N., Calero, G., Romero, G. and Vilardaga, J. P. (2013) Noncanonical GPCR signaling arising from a PTH receptor-arrestin-$G{\beta}{\gamma}$ complex. Proc. Natl. Acad. Sci. U.S.A. 110, 1530-1535. https://doi.org/10.1073/pnas.1205756110
  27. Williams, J. T., Ingram, S. L., Henderson, G., Chavkin, C., von Zastrow, M., Schulz, S., Koch, T., Evans, C. J. and Christie, M. J. (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65, 223-254. https://doi.org/10.1124/pr.112.005942
  28. Yang, M., He, R. L., Benovic, J. L. and Ye, R. D. (2009) $\beta$-arrestin1 interacts with the G protein subunits ${\beta}1{\gamma}2$ and promotes ${\beta}1{\gamma}2$-dependent Akt signaling for $NF-{\kappa}B$ activation. Biochem. J. 417, 287-296. https://doi.org/10.1042/BJ20081561
  29. Zheng, M., Cheong, S. Y., Min, C., Jin, M., Cho, D. I. and Kim, K. M. (2011) $\beta$-arrestin2 plays permissive roles in the inhibitory activities of RGS9-2 on G protein-coupled receptors by maintaining RGS9-2 in the open conformation. Mol. Cell. Biol. 31, 4887-4901. https://doi.org/10.1128/MCB.05690-11
  30. Zheng, M., Zhang, X., Guo, S., Zhang, X., Min, C., Cheon, S. H., Oak, M. H., Kim, Y. R. and Kim, K. M. (2016) Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors. Biochim. Biophys. Acta 1863, 77-90. https://doi.org/10.1016/j.bbamcr.2015.10.007