DOI QR코드

DOI QR Code

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin (Department of Advanced Materials Engineering, Hanyang University) ;
  • Moon, Jeong Hyun (Power Semiconductor Research Center, High Voltage Direct Current Research Division, Korea Electrotechnology Research Institute) ;
  • Seok, Ogyun (Power Semiconductor Research Center, High Voltage Direct Current Research Division, Korea Electrotechnology Research Institute) ;
  • Bahng, Wook (Power Semiconductor Research Center, High Voltage Direct Current Research Division, Korea Electrotechnology Research Institute) ;
  • Park, Tae Joo (Department of Advanced Materials Engineering, Hanyang University) ;
  • Ha, Min-Woo (Department of Electrical Engineering, Myongji University)
  • Received : 2016.08.25
  • Accepted : 2016.11.08
  • Published : 2017.04.30

Abstract

4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.

Keywords

References

  1. B. J. Baliga, "The future of power semiconductor device technology", Proceedings of the IEEE, Vol.89, No.6, pp.822-832, 2001. https://doi.org/10.1109/5.931471
  2. M. Ostling, R. Ghandi, and C.-M. Zetterling, "SiC power devices - present status, applications and future perspective", Proceedings of the 23rd International Symposium on Power Semiconductor Devices & IC's, p. 10-15, May, 2001.
  3. J. A. Cooper, M. R. Melloch, R. Singh, A. Agarwal, and J. W. Palmour, "Status and prospects for SiC power MOSFETs", Electron Devices, IEEE Transactions on, Vol.49, No.4, p.658-664, April, 2002. https://doi.org/10.1109/16.992876
  4. W. Van Haeringen, P. A. Bobbert, and W. H. Backes, "On the band gap variation in SiC polytypes", Physica Status Solidi (b), Vol.202, p.63, July, 1997. https://doi.org/10.1002/1521-3951(199707)202:1<63::AID-PSSB63>3.0.CO;2-E
  5. A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, "Ionization rates and critical fields in 4H silicon carbide", Applied Physics Letters, Vol.71, p.90-92, 1997. https://doi.org/10.1063/1.119478
  6. A. Suzuki, H. Ashida, N. Furui, K. Mameno, and H. Matsunami, "Thermal oxidation of SiC and electrical properties of Al-$SiO_2$-SiC MOS structure", Applied Physics, Japanese Journal of, Vol.21, No.4, p.579-585, 1982. https://doi.org/10.1143/JJAP.21.579
  7. J. A. Cooper, "Advances in SiC MOS technology", Physica Status Solidi (a), Vol.162, p.305-320, July, 1997. https://doi.org/10.1002/1521-396X(199707)162:1<305::AID-PSSA305>3.0.CO;2-7
  8. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide", IEEE Electron Device Letters, Vol.22, No.4, p.176-178, April, 2001. https://doi.org/10.1109/55.915604
  9. H. Yoshioka, T. Nakamura, and T. Kimoto, "Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance", Applied Physics, Journal of, Vol.111, p.014502, 2012. https://doi.org/10.1063/1.3673572
  10. V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, "Intrinsic SiC/SiO2 interface states", Physica Status Solidi (a), Vol.162, p.321-337, 1997. https://doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F
  11. C. Kim, J. H. Moon, J. H. Yim, D. H. Lee, J. H. Lee, H. H. Lee, and H. J. Kim, "Comparison of thermal and atomic-layer-deposited oxides on 4H-SiC after post-oxidation-annealing in nitric oxide", Applied Physics Letters, Vol.100, p.082112, 2012. https://doi.org/10.1063/1.3689766
  12. X. Yang, B. Lee, and V. Mishra, "Electrical characteristics of $SiO_2$ deposited by atomic layer deposition on 4H-SiC after nitrous oxide anneal", Electron Devices, IEEE Transactions on, Vol.63, No.7, p.2826-2830, July, 2016. https://doi.org/10.1109/TED.2016.2565665
  13. M.-W. Ha,Y. J. Jo, K. Choi, J. H. Moon, O. Seok, N.-K. Kim, and T. J. Park, "Fabrication and investigation of 4H-SiC MOS Capacitors", Asia-Pacific Workshop on Fundamentals and Applications of Advanced Semiconductor Devices, p.288-290, July, 2016.
  14. A. K. Agarwal, S. Seshadri, and L. B. Rowland, "Temperature dependence of Fowler-Nordheim current in 6H- and 4H-SiC MOS Capacitors", IEEE Electron Device Letters, Vol.18, p.592-594, 1997. https://doi.org/10.1109/55.644081
  15. K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai, "Reduction of interface-state density in 4H-SiC n-type metal-oxide-semiconductor structures using high-temperature hydrogen annealing", Applied Physics Letters, Vol.76, p.1585-1587, 2000. https://doi.org/10.1063/1.126103
  16. D. A. Neamen, "Semiconductor physics & devices", Irwin, The McGraw-Hill Companies, Inc., 1997.
  17. E. H. Nicollian and J. R. Brews, "MOS physics and technology", John Wiley & Sons, Inc., New York, 1982.
  18. D. K. Schroder, "Semiconductor material and device characterization", John Wiley & Sons, Inc., New York, 1998.
  19. K. Gelderman, L. Lee, and S. W. Donne, "Flat-band potential of a semiconductor: using the Mott-Schottky equation", Chemical Education, Journal of, Vol.84, No.4, p.685-688, April, 2007. https://doi.org/10.1021/ed084p685
  20. B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, "Characteristics of the surface-state charge ($Q_{ss}$) of thermally oxidized silicon", J. Electrochem. Soc., Vol.114, No.3, p.266-274, March, 1967. https://doi.org/10.1149/1.2426565
  21. C. Kim, S. Lee, J. H. Moon, J. R. Kim, H. Lee, H Kang, H. Kim, J. Heo, and H. J. Kim, "The effect of reduced oxidation process using ammonia annealing and deposited oxides on 4H-SiC metal-oxide-semiconductor structure", ECS Solid State Letters, Vol.4, No.9, p.N9-12, July, 2015. https://doi.org/10.1149/2.0021509ssl