DOI QR코드

DOI QR Code

Compressive and Tensile Properties of Fiber-Reinforced Cementless Composites According to the Combination of Sodium-Type Alkali-Activators

나트륨계 알칼리 활성화제 조합에 따른 섬유보강 무시멘트 복합재료의 압축 및 인장특성

  • Received : 2017.02.22
  • Accepted : 2017.03.15
  • Published : 2017.03.30

Abstract

The purpose of this study is to investigate experimentally the effect of types of alkali-activators and curing conditions on the compressive and tensile behavior of fiber-reinforced cementless composites. Two types of alkali-activators and two curing conditions were determined and density test, compressive strength test, and uniaxial tension test were performed. Test results showed that the cementless composite with sodium silicate showed higher performance in terms of strength, tensile strain capacity, and toughness than that with calcium hydroxide and sodium carbonate. The effect of curing conditions depends on the types of alkali-activators.

이 연구의 목적은 알칼리 활성화제의 종류와 양생방법에 따라 나타나는 고로슬래그 기반 섬유보강 복합재료의 압축강도 및 인장거동에 대해 실험적으로 조사하는 것이다. 이를 위하여 알칼리 활성화제 2종류의 배합과 2가지 양생방법을 결정하였고, 밀도 실험, 압축강도 실험과 일축인장 실험을 수행하였다. 실험 결과, 규산나트륨을 사용한 경우 수산화칼슘과 탄산나트륨을 혼합하여 사용한 경우에 비하여 강도, 인장변형성능, 인성 측면에서 우수한 것으로 나타났으며, 활성화제 종류에 따라 양생방법에 의한 영향이 다르게 나타나는 것을 확인하였다.

Keywords

References

  1. Ahn, J.W., Cho, J.S., Kim, H.S., Han, G.C., Han, K.S., Kim, H. (2003). Activation property of blast furnace slag by alkaline activator, Journal of the Korean Ceramic Society, 40(10), 1005-1014 [in Korean]. https://doi.org/10.4191/KCERS.2003.40.10.1005
  2. Cho, K.H., Yeoi, I.H., Ji, D.H. (2016). Evalution on chloride binding capacity of mineral mixed paste containing an alkaline activator, Journal of the Korea Concrete Institute, 28(2), 157-165 [in Korean]. https://doi.org/10.4334/JKCI.2016.28.2.157
  3. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C. Lee, Y. (2016). Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite. Journal of the Cement and Concrete Composites, 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002
  4. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series
  5. Kanda, T., Li, V.C. (2006). Practical design criteria for saturated pseudo sstrain hardening behavior in ecc, Journal of Advanced Concrete Technology, 4(1), 59-72. https://doi.org/10.3151/jact.4.59
  6. Kim, G.W., Kim, B.J., Yang, K.H., Song, J.K. (2012). Strength development of blended sodium alkali-activated ground granulated blast-furnace slag(GGBS) mortar, Journal of the Korea Concrete Institute, 24(2), 137-145 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.2.137
  7. Lee, B.Y., Cho, C.G., Lim, H.J., Song, J.K., Yang, K.H., Li, V.C. (2012). Strain hardening fiber reinforced alkali-activated mortar-a feasibility study. Journal of the Construction and Building Materials, 37, 15-20. https://doi.org/10.1016/j.conbuildmat.2012.06.007
  8. Lepech, M.D., Li, V. C. (2009). Water permeability of engineered cementitious composites, Journal of Cement and Concrete Composites, 31(10), 744-753. https://doi.org/10.1016/j.cemconcomp.2009.07.002
  9. Li, M., Li, V.C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites, Journal of the Materials and Structure, 46(3), 405-420. https://doi.org/10.1617/s11527-012-9909-z
  10. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. (2008). Alkali-activated binders: a review. part 2. about materials and binder manufacture, Journal of the Construction and Building Materials, 22(7), 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
  11. Palomo, A., Grutzeck, M.W., Blanco, M.T. (1999). Alkali-activated fly ashes: a cement for the future, Journal of the Cement and Concrete Research, 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  12. Purdon, A.O. (1940). The action of alkalis on blast-furnace salg, Journal of the Society of Chemical Industry, 59, 191-202. https://doi.org/10.1002/jctb.5000591202
  13. Roy, D.M. (1999). Alkali-activated cements: opportunities and challenges, Journal of the Cement and Concrete Research, 29(2), 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  14. Shi, C., Roy, D., Krivenko, P.V. (2006). Alkali-Activated Cements and Concrete. Taylor and Francis.
  15. Wang, S., PU, X. C., Scrivener, K.L., Pratt, P.L. (1995). Alkali-activated slag cement and concrete: a review of properties and problems, Journal of the Advances in Cement Research, 7(27), 93-102. https://doi.org/10.1680/adcr.1995.7.27.93