Abstract
Amphibious assault vehicles have been used in the Marine Corps. In recent years, their ability to move faster is becoming one of the most important considerations. At high speeds, the vehicle tends to sink at the stern and sometimes the opposite occurs. Such dynamic trim plays a significant role in determining the vehicle's hydrodynamic performance. Furthermore, an excessive trim by stern upsets the viewing angle. We have thus considered a stern hydrofoil to reduce the dynamic trim of the amphibious assault vehicle. Laboratory-scale resistance tests were conducted in a towing tank at the Seoul National University (SNU). This study aims to make a preliminary assessment of the hydrodynamic performance of the vehicle with the stern hydrofoil and to investigate permissible speed range of the vehicle. The experimental results show that the stern hydrofoil can successfully achieve a reduction of both the dynamic trim and the hydrodynamic resistance at running speeds above 20 km/h.