References
- O'Hayre, R., Cha, S. W., Colella, W. and Prinz, F. B., 2009, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons, New York.
- Lo Faro, M., Antonucci, V., Antonucci, P. L. and Arico, A. S. 2012, "Fuel Flexibility: A Key Challenge for SOFC Technology," Fuel, Vol. 102, pp. 554-559. https://doi.org/10.1016/j.fuel.2012.07.031
- Zhao, F. and Virkar, A. V., 2005, "Dependence of Polarization in Anode-supported Solid Oxide Fuel Cells on Various Cell Parameters," J. Power sources, Vol. 141, No. 1, pp. 79-95. https://doi.org/10.1016/j.jpowsour.2004.08.057
- Wang, Z., Zhang, N., Qiao, J., Sun, K. and Xu, P., 2009, "Improved SOFC Performance with Continuously Graded Anode Functional Layer," Electrochem. Commun., Vol. 11, No. 6, pp. 1120-112. https://doi.org/10.1016/j.elecom.2009.03.027
- Brus, G., Iwai, H., Sciazko, A., Saito, M., Yoshida, H. and Szmyd, J. S., 2015, "Local Evolution of Anode Microstructure Morphology in a Solid Oxide Fuel Cell after Long-term Stack Operation," J. Power Sources, Vol. 288, pp. 199- 205. https://doi.org/10.1016/j.jpowsour.2015.04.092
- Pecho, O. M., Mai, A., Munch, B., Hocker, T., Flatt, R. J. and Holzer, L., 2015, "3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance," Materials, Vol. 8, No. 10, pp. 7129-7144. https://doi.org/10.3390/ma8105370
- Kennouche, D., Chen-Wiegart, Y. C. K., Yakal-Kremski, K. J., Wang, J., Gibbs, J. W., Voorhees, P. W. and Barnett, S. A., 2016, "Observing the Microstructural Evolution of Ni-Yttria-stabilized Zirconia Solid Oxide Fuel Cell Anodes," Acta Mater., Vol. 103, pp. 204-210. https://doi.org/10.1016/j.actamat.2015.09.055
- Costamagna, P., Costa, P. and Antonucci, V., 1998, "Micro-modelling of Solid Oxide Fuel Cell Electrodes," Electrochim. Acta, Vol. 43, No. 3-4, pp. 375-394. https://doi.org/10.1016/S0013-4686(97)00063-7
- Nam, J. H. and Jeon, D. H., 2006, "A Comprehensive Micro-scale Model for Transport and Reaction in Intermediate Temperature Solid Oxide Fuel Cells," Electrochim. Acta, Vol. 51, No. 17, pp. 3446-3460. https://doi.org/10.1016/j.electacta.2005.09.041
- Jeon, D. H., Nam, J. H. and Kim, C. J., 2006, "Microstructural Optimization of Anode- supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model," J. Electrochem. Soc., Vol. 153, No. 2, pp. A406-A417. https://doi.org/10.1149/1.2139954
- Shin, D. and Nam, J. H., 2015, "An Effectiveness Model for Electrochemical Reactions in Electrodes of Intermediate-Temperature Solid Oxide Fuel Cells," Electrochim. Acta, Vol. 171, pp. 1-6. https://doi.org/10.1016/j.electacta.2015.04.171
- Shin, D. Baek, S. M., Nam, J. H. and Kim, C. J., 2016, "Efficient Microscale Simulation of Intermediate-Temperature Solid Oxide Fuel Cells based on the Electrochemical Effectiveness Concept," Comput. Chem. Eng., Vol. 90, pp. 268- 277. https://doi.org/10.1016/j.compchemeng.2016.04.032
- Bouvard, D. and Lange, F. F., 1991, "Relation between Percolation and Particle Coordination in Binary Power Mixtures," Acta Metall. Mater., Vol. 39, No. 12, pp. 3083-3090. https://doi.org/10.1016/0956-7151(91)90041-X
- Bieberle, A., Meier, L. P. and Gauckler, L. J. 2001, "The Electrochemistry of Ni Pattern Anodes used as Solid Oxide Fuel Cell Model Electrodes," J. Electrochem. Soc., Vol. 148, No. 6, pp. A646-A656. https://doi.org/10.1149/1.1372219
-
Radhakrishnan, R., Virkar, A. V. and Singhal, S. C., 2005, "Estimation of Charge-Transfer Resistivity of
$La_{0.8}Sr_{0.2}MnO_3$ Cathode on$Y_{0.16}Zr_{0.84}O_2 $ Electrolyte using Patterned Electrodes," J. Electrochem. Soc., Vol. 152, No. 1, pp. A210-A218. https://doi.org/10.1149/1.1829415 - Krishna, R. and Wesselingh, J. A., 1997, "The Maxwell-Stefan Approach to Mass Transfer," Chem. Eng. Sci., Vol. 52, No. 6, pp. 861-911. https://doi.org/10.1016/S0009-2509(96)00458-7
- Todd, B. and Young, J. B., 2002, "Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling," J. Power Sources, Vol. 110, No. 1, pp. 186-200. https://doi.org/10.1016/S0378-7753(02)00277-X