DOI QR코드

DOI QR Code

상용 SCR 촉매의 바나듐 표면밀도가 반응활성 및 SO2 내구성에 미치는 영향연구

Effect of Vanadium Surface Density of SCR Catalyst on Reaction Activity and SO2 Durability

  • 원종민 (경기대학교 환경에너지공학과 일반대학원) ;
  • 박광희 (경기대학교 환경에너지공학과 일반대학원) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Won, Jong Min (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Park, Kwang Hee (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University,)
  • 투고 : 2016.12.09
  • 심사 : 2017.01.26
  • 발행 : 2017.04.10

초록

본 연구에서는 다양한 상용 SCR 촉매의 $NH_3$-SCR 반응특성을 확인하기 위하여 반응활성 및 XRD, BET, Raman 분석을 수행한다. 상용 SCR 촉매는 바나듐 함량(1.3-5.4 wt%)이 증가함에 따라 선형적으로 반응속도가 증가됨을 확인할 수 있다. 또한, 상기 분석을 통하여 VOx 표면밀도가 8.1 이상의 촉매를 선별하고, 표면 구조분석을 통해 Crystalline VOx가 형성되지 않은 범위 내에서 촉매 내 WOx의 첨가는 TOF를 증가시키는 것으로 확인할 수 있다. $SO_2$ 내구성의 경우 바나듐 함량이 증가하면 크게 감소하는 경향을 보이며, W과 Si가 첨가될 때 내구성이 가장 크게 증가한다.

In this study, the reaction activity and XRD, BET, and Raman analysis were performed to verify $NH_3$-SCR reaction characteristics of various commercial SCR catalysts. It can be seen that the reaction rate of each commercial SCR catalyst increased linearly with increasing the vanadium content (1.3-5.4 wt%). In addition, through the above analysis, it was possible to confirm that the addition of WOx in the catalyst increased the Turn over frequency (TOF) within the range where the VOx surface density was more than 8.1 and the crystalloid VOx was not formed through the surface structure analysis. $SO_2$ durability tended to decrease with increasing the vanadium content, and the durability increased the most when W and Si were added.

키워드

참고문헌

  1. G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_3$ over MnOx-$CeO_2$ catalysts, J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  2. S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy, 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
  3. P. S. Metkar, M. P. Harold, and V. Balakotaiah, Selective catalytic reduction of NOx on combined Fe- and Cu-Zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B, 111-112, 67-80 (2012). https://doi.org/10.1016/j.apcatb.2011.09.019
  4. T. Kolli, K. R. Tolonen, and U. Lassi, Influence of BaO on Pd/$Al_2O_3$-based catalysts in $C_2H_4$ and CO oxidation as well as in NO reduction, Catal. Today, 100, 303-307 (2005). https://doi.org/10.1016/j.cattod.2004.09.065
  5. A. D. Bellifa, Y. N. Tchenar, A. C. Braham, R. Bachir, S. Bedrane, and C. Kappenstein, Preparation and characterization of 20 wt% $V_2O_5$-$TiO_2$ catalyst oxidation of cyclohexane, Appl. Catal. A: Gen., 305, 1-6 (2006). https://doi.org/10.1016/j.apcata.2006.01.010
  6. W. Zhao, Q. Zhong, Y. Pan, and R. Zhang, Defect structure and evolution mechanism of $O^{2-}$ radical in F-doped $V_2O_5$/$TiO_2$ Catalysts, Collids Surf. A, 436, 1013-1020 (2013). https://doi.org/10.1016/j.colsurfa.2013.08.047
  7. S. H. Choi, S. P. Cho, J. Y. Lee, S. C. Hong, and S. I. Hong, The influence of non-stoichiometric species of V/$TiO_2$ catalysts on selective catalytic reduction at low temperature, J. Mol. Catal. A, 304, 166-173 (2009). https://doi.org/10.1016/j.molcata.2009.02.008
  8. C. Wang, S. Yang, H. Chang, Y. Peng, and J. Li, Dispersion of tungsten oxide on SCR performance of $V_2O_5$-$WO_3$/$TiO_2$: Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013). https://doi.org/10.1016/j.cej.2013.04.005
  9. D. Srinivas, W. F. Holderich, S. Kujath, M. H. Valkenberg, T. Raja, L. Saikia, R. Hinze, and V. Ramaswamy, Active sites in vanadia/titania catalysts for selective aerial oxidation of ${\beta}$-picoline to nicotinic acid, J. Catal., 259, 165-173 (2008). https://doi.org/10.1016/j.jcat.2008.07.019
  10. F. Tang, K. Zhuang, F. Yang, L. Yang, B. Xu, J. Qiu, and Y. Fan, Effect of dispersion state and surface properties of supported vanadia on the activity of $V_2O_5$/$TiO_2$ catalysts for the selective catalytic reduction of NO by $NH_3$, Chin. J. Catal., 33, 933-940 (2012). https://doi.org/10.1016/S1872-2067(11)60365-3
  11. Z. Wu, V. Schwartz, M. Li, A. J. Rondinone, and S. H. Overbury, Support shape effect in metal oxide catalysis: Ceria-nanoshape Supported vanadia catalysts for oxidative dehydrogenation of isobutane, J. Phys. Chem. Lett., 3, 1517-1522 (2012). https://doi.org/10.1021/jz300513u
  12. L. Lietti, I. Nova, and P. Forzatti, Selective catalytic reduction (SCR) of NO by $NH_3$ over $TiO_2$-supported $V_2O_5$-$WO_3$ and $V_2O_5$-$MoO_3$ catalysts, Top. Catal., 11-12, 111-122 (2000). https://doi.org/10.1023/A:1027217612947
  13. Y. Peng, C. Wang, and J. Li, Structure-activity relationship of VOx/$CeO_2$ nanorod for NO removal with ammonia, Appl. Catal. B, 144, 538-546 (2014). https://doi.org/10.1016/j.apcatb.2013.07.059
  14. I. Giakoumelou, C. Fountzoula, C. Kordulis, and S. Boghosian, Molecular structure and catalytic activity of $V_2O_5$/$TiO_2$ catalysts for the SCR of NO by $NH_3$: In-situ Raman spectra in the presence of $O_2$, $NH_3$, NO, $H_2$, $H_2O$, and $SO_2$, J. Catal., 239, 1-12 (2006). https://doi.org/10.1016/j.jcat.2006.01.019
  15. G. T. Went, L. Li-jen, R. R. Richard, and T. B. Alexis, The effects of structure on the activity and Selectivity of $V_2O_5$/$TiO_2$ catalyst for the reduction of NO by $NH_3$, J. Catal., 134, 492-505 (1992). https://doi.org/10.1016/0021-9517(92)90337-H
  16. I. Nova, L. dall'Acqua, Li. Lietti, E. Giamello, and P. Forzatti, Studt of thermal deactivation of a deNOx commercial catalyst, Appl. Catal. B, 35, 31-42 (2001). https://doi.org/10.1016/S0926-3373(01)00229-6
  17. L. J. Alemany and F. Berti, Characterization and composition of commercial $V_2O_5$&z.sbnd;$WO_3$&z.sbnd;$TiO_2$ SCR catalysts, Appl. Catal. B, 10, 299-311 (1996). https://doi.org/10.1016/S0926-3373(96)00032-X
  18. S. M. Cho, Properly apply selective catalytic reduction for NOx removal, Chem. Eng. Prog., 90, 39-45 (1994).
  19. S. C. Wood, Select the right IMOx control technology, Chem. Eng. Prog., 24, 32-38 (1994).
  20. H. H. Phil, M. P. Reddy, P. A. Kumar, L. K. Ju, and J. S. Hyo, $SO_2$ resistant antimony promoted $V_2O_5$/$TiO_2$ catalyst for $NH_3$-SCR of NOx at low temperatures, Appl. Catal. B, 78, 301-308 (2008). https://doi.org/10.1016/j.apcatb.2007.09.012
  21. P. G. W. A. Kompio, A. Bruckner, F. Hipler, G. Auer, E. Loffler, and W. Grunert, A new view on the relations between tungsten and vanadium in $V_2O_5$ single bond $WO_3$/$TiO_2$ catalysts for the selective reduction of NO with $NH_3$, J. Catal., 286, 237-247 (2012). https://doi.org/10.1016/j.jcat.2011.11.008
  22. J. P. Dunn, P. R. G. Koppula, H. Stenger, and I. E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Catal. B, 19, 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
  23. B. S. Shirke, P. V. Korake, P. P. Hankare, S. R. Bamane, and K. M. Garadkar, Synthesis and characterization of pure anatase $TiO_2$ nanoparticles, J. Mater. Sci., 22, 821-824 (2011).
  24. D. W. Kwon and S. C. Hong, Correlation between physicochemical properties of various commercial $TiO_2$ supports and $NH_3$-SCR activities of Ce/Ti catalysts, Appl. Chem. Eng., 26, 193-198 (2015). https://doi.org/10.14478/ace.2015.1012
  25. R. D. Shannon and J. A. Pask, Kinetics of the anatase-rutile transformation, J. Am. Ceram. Soc., 48, 391-398 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14774.x
  26. I. E. Wachs, Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts, Catal. Today, 27, 437-455 (1996). https://doi.org/10.1016/0920-5861(95)00203-0
  27. D. W. Kwon, K. H. Park, and S. C. Hong, Influence of VOx surface density and vanadyl species on the selective catalytic reduction of NO by $NH_3$ over VOx/$TiO_2$ for superior catalytic activity, Appl. Catal. A, 499, 1-12 (2015). https://doi.org/10.1016/j.apcata.2015.04.005
  28. Y. Byun, K. B. Ko, M. Cho, W. Namkung, K. Lee, D. N. Shin, and D. J. Koh, Reaction pathways of NO oxidation by sodium chlorite powder, Environ. Sci. Technol., 43, 5054-5059 (2009). https://doi.org/10.1021/es900152b
  29. T. W. Chien, and H. Chu, Removal of $SO_2$ and NO from flue gas by wet scrubbing using an aqueous $NaClO_2$ solution, J. Hazard. Mater., 80, 43-57 (2000). https://doi.org/10.1016/S0304-3894(00)00274-0
  30. M. Kobayashi and K. Miyoshi, $WO_3$-$TiO_2$ monolithic catalysts for high temperature SCR of NO by $NH_3$: Influence of preparation method on structural and physico-chemical properties, activity and durability, Appl. Catal. B, 72, 253-261 (2007). https://doi.org/10.1016/j.apcatb.2006.11.007
  31. L. Lietti, J. L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello, and F. Bregani, Reactivity of $V_2O_5$-$WO_3$/$TiO_2$ catalysts in the selective catalytic reduction of nitric oxide by ammonia, Catal. Today, 29, 143-148 (1996). https://doi.org/10.1016/0920-5861(95)00250-2
  32. B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon, and H. K. Lee, Study on the removal of NOx from simulated flue gas using acidic $NaClO_2$ solution, J. Environ. Sci., 20, 33-38 (2008). https://doi.org/10.1016/S1001-0742(08)60004-2
  33. F. D. Hardcastle and I. E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy, J. Phys. Chem., 95, 5031-5041 (1991). https://doi.org/10.1021/j100166a025