DOI QR코드

DOI QR Code

Effect of the Concentration of Humic Acid on Growth and Yield of Organically Cultivated Hot-Pepper

휴믹산 농도가 유기농 고추의 생육 및 수량에 미치는 영향

  • Kim, Min-Jeong (Organic Agricultural Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shim, Chang-Ki (Organic Agricultural Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yong-Ki (Organic Agricultural Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Jong-Ho (Organic Agricultural Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Eun-Jung (Organic Agricultural Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ko, Byong-Gu (Organic Agricultural Division, National Academy of Agricultural Science, Rural Development Administration)
  • 김민정 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 심창기 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 김용기 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 박종호 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 한은정 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 고병구 (농촌진흥청 국립농업과학원 유기농업과)
  • Received : 2017.02.21
  • Accepted : 2017.03.08
  • Published : 2017.03.30

Abstract

The purpose of this study was to investigate the effect of humic acid on the germination, the growth and the yield of hot pepper when treated with organic hot pepper seedlings and growing season. The germination rate of 0.05% and 0.1% humic acid was higher than that of untreated, but the germination rates of 0.4% and 1.0% humic acid were 90.0% and 86.7%, respectively, compared with the control treatment (96.7%). At 30 days after transplanting, hot pepper treated with low (0.05%) or high (1.0%) concentration of humic acid decreased the growth of hot pepper seedlings, whereas 0.2% humic acid treatment significantly increased a average height (97.6 cm), leaf number (84.7) and fresh weight ($128.1g\;plant^{-1}$) of hot pepper. After 60 days of treatment with humic acid, the height of hot pepper was significantly longer in 0.2% humic acid. The mean green fruit number of 0.2%, 0.1% and 0.05% humic acid were not significantly different among the treatments, but the mean green pepper number of 0.4% and 1.0% humic acid treatments were the higher with 35.2% and 29.1%, respectively than other treatments. However, the fresh weight of green pepper was found to be $111.5g\;plant^{-1}$ more heavier than the untreated in 0.2% humic acid. The total ($5.8kg\;plant^{-1}$) and average ($1.4kg\;plant^{-1}$) fresh weight of pepper were higher than that of untreated control, except for the 1.0% humic acid treatment after 60 days of soil irrigation. The total weight of hot pepper treated with 0.2% and 0.1% humic acid treatment was $9.3kg\;plant^{-1}$ and $8.6kg\;plant^{-1}$, respectively, which were heavier than the other treatments. The effect of humic acid concentrations on soil microbial populations, pH and EC was investigated. The soil bacterial population density of 0.2% humic acid treatment was 3.5 times higher than that of untreated control soil. As the concentration of humic acid increased from 0.05% to 1.0%, pH and EC of hot pepper grown soil also increased.

본 연구의 목적은 휴믹산을 농도별로 유기농 고추 유묘기와 생육기에 처리하였을 때, 고추의 발아, 생육, 수량에 미치는 영향을 검정하고자 하였다. 0.05%와 0.1% 휴믹산을 상토에 처리하였더니 무처리보다 고추 발아율이 높았으나 0.4%와 1.0% 휴믹산의 발아율은 각각 90.0%와 86.7%로 96.7%의 무처리보다 낮았다. 고추유묘 정식 30일 후, 휴믹산을 0.05%나 1.0%는 무처리에 비해 생육이 감소하였으나 0.2% 휴믹산을 처리한 고추의 평균 초장(97.6 cm), 엽수(84.7개) 및 생체중($128.1g\;plant^{-1}$)이 유의적으로 증가하였다. 휴믹산 토양관주 처리 60일 후, 0.2% 휴믹산 처리구의 고추 초장이 유의적으로 가장 길었다. 0.2%, 0.1%, 0.05% 휴믹산 처리구의 평균 청과수는 처리 간에 유의적인 차이가 없었으나 0.4%와 1.0% 휴믹산 처리구의 평균 청과수가 각각 35.2개와 29.1개로 가장 많았다. 그러나 풋고추의 생체중은 0.2% 휴믹산 처리구가 무처리에 비해 평균 $111.5g\;plant^{-1}$ 더 무거운 것으로 나타났다. 휴믹산 농도별 토양관주 60일 후, 1.0% 휴믹산 처리구를 제외하고 무처리에 비해 고추의 총무게($5.8kg\;plant^{-1}$)와 평균 무게($1.4kg\;plant^{-1}$)가 높은 것으로 나타났으며 0.2%와 0.1% 휴믹산 처리구의 고추 총무게가 각각 $9.3kg\;plant^{-1}$$8.6kg\;plant^{-1}$로 다른 처리농도에 비해 많았다. 휴믹산 토양관주 처리에 따른 토양의 세균, pH 및 EC에 미치는 영향을 조사하였더니, 0.2% 휴믹산에서 토양의 세균밀도가 무처리구에 비해 3.5배 더 높게 나타났다. 휴믹산의 농도가 0.05%에서 1.0%로 증가함에 따라 고추재배 토양의 pH와 EC도 증가하는 것으로 나타났다.

Keywords

References

  1. Park, J. M., Lee, I. B., Kang, Y. I., Hwang, K. S., "Effects of Mineral and Organic Fertilizations on Yield of Hot Pepper and Changes in Chemical Properties of Upland Soil", Korean J. Horti. Sci. & Techno. 27, pp. 24-29. (2009).
  2. Yang, S. K., Seo, Y. W., Lee, Y. S. Kim, H. W., Ma, K. C., Lim, K. H., Kim, H. J., Kim, J. G., Jung, W. J., "Effects of green manure crops on red-pepper yield and soil physico-chemical properties in the vinyl house", Korean J. Org. Agri. 19, pp. 215-228. (2011).
  3. Hays, H. B., "Humic substances II: In search of structure", Wiley, New York. (1989).
  4. Stevenson, F. J., "Humus chemistry: Genesis, Composition, Reactions", John Wiley & Sons, New York, U.S.A. pp. 453-471. (1994).
  5. Aiken, G. R., Mcknight, D. M., Wershaw, R. L., MacCarthy, P., "Humic substances in soil, sediment and water", John Wiley & Sons, New York, U.S.A. pp. 1-12. (1985).
  6. Lee, C. H., Shin, H. S., Kang, K. H., "Chemical and pectroscopic characterization of peat moss and its different humic fractions (Humin, Humic acid and Fulvic acid)", J. KoSSGE 9, pp. 42-51. (2004).
  7. Killi, F., "Effects of potassium humate solution and soaking periods on germination characteristics of undelinted cotton seeds (Gossypium hirsutum L.)", J. Environ. Biol., 25, pp. 395-398. (2004).
  8. Antosova, B., Novak, J., Kozle,r J., Kub Cek, J., Kimmerova, I., "Methodic for testing biological activities of humic substances in higher plant, In: Barroso, M.I. (ed.), Reactive and Functional Polymers Research Advances", Nova Science Publisher, New York. pp. 191-203. (2007).
  9. Desanfilippo, E. C., Arguello, J. A., Orioli, G. A.,"The effect of humic acids and their different molecular mass fractions on germination in sunflower", Biol. Plant., 32, pp. 42-48. (1990). https://doi.org/10.1007/BF02897341
  10. Nardi, S., Pizzeghello, D., Muscolo, A., Vianello, A., "Physiological effects of humic substances on higher plants", Soil Biol. Biochem., 34, pp. 1527-1536. (2002). https://doi.org/10.1016/S0038-0717(02)00174-8
  11. Olk, D. C., Samson, M. I., Gapas, P., "Inhibition of nitrogen mineralization in young humic fractions by anaerobic decomposition of rice crop residuum", Eur. J. Soil Sci., 58, pp. 270-281. (2007). https://doi.org/10.1111/j.1365-2389.2006.00836.x
  12. Lulakis, M. D., Petsas, S. I., "Effect of humic substances from vine canes mature compost on tomato seedling growth", Bioresour. Technol., 54, pp. 179-182. (1995). https://doi.org/10.1016/0960-8524(95)00129-8
  13. Turkmen, O., Dursun, A., Turan, M, Erdinc, C., "Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions", Acta Agri. Scandinavica, 54, pp.168-174. (2003).
  14. Ferrara, G., Loffredo, E., Senesi, N., "Anticlastogenic, antitoxic and sorption effects of humic substances on the mutagen maleic hydrazide tested in leguminous plants", Eur. J. Soil Sci., 55, pp. 449-458. (2004). https://doi.org/10.1111/j.1365-2389.2004.00611.x
  15. Asenjo, M. C. G., Gonzalez, J. L., Maldonado, J. M., "Influence of humic extracts on germination and growth of ryegrass", Commun. Soil Sci. Plant. Anal., 31, pp. 101-114. (2000). https://doi.org/10.1080/00103620009370423
  16. Nardi, S., Pizzeghello, D., Muscolo, A., Vianello, A., "Physiological effects of humic substances on higher plants", Soil Biol. Biochem., 34, pp. 1527-1536. (2002). https://doi.org/10.1016/S0038-0717(02)00174-8
  17. Muscolo, A., Sidari, M., Attina, E., Francioso, O., Tugnoli, V., Nardi, S., "Biological activity of humic substances is related to their chemical structure", Soil Sci. Soc. Am. J., 71, pp. 75-85. (2007). https://doi.org/10.2136/sssaj2006.0055
  18. Pellissier, F., "Allelopathic inhibition of spruce germination", Acta Oecol. Intern. J. Ecol., 14, pp. 211-218. (1993).
  19. Hartwigsen, J. A., Evans, M. R., "Humic acid seed and substrate treatments promote seedling root development", HortScience 35, pp. 1231-1233. (2000).
  20. Evans, M. R., Li, G., "Effect of humic acids on growth of annual ornamental seedling plugs", Horttechnology, 13, pp. 661-665. (2003)
  21. Van Bergen, P. M., Bull, I. D., Poulton, P. R., Evershed, R. P., "Orgnaic geochemical studies of soils from the Rothamsted classical experiments-I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk wilderness", Organic Geochem, 26, pp. 117-135. (1997). https://doi.org/10.1016/S0146-6380(96)00134-9
  22. Arancon, N. Q., Edwards, C. A., Lee, S., Byrne, R., "Effects of humic acids from vermicomposts on plant growth", European J. of Soil Biology 42, pp. S65-S69. (2006). https://doi.org/10.1016/j.ejsobi.2006.06.004
  23. von Lutzow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., "Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review", Eur. J. Soil Sci., 57, pp. 426-445. (2006). https://doi.org/10.1111/j.1365-2389.2006.00809.x
  24. Chen, Y., Clapp, C. E., Magen, H., "Mechanisms of plant growth stimulation by humic substances: The role of organoiron complexes", Soil Sci. Plant Nutr., 50, pp. 1089-1095. (2004). https://doi.org/10.1080/00380768.2004.10408579
  25. Sera, B., Novak, F., "The effect of humic substances on germination and early growth of Lamb's Quarters (Chenopodium album agg.)", Biologia, 66, pp. 470-476. (2011).
  26. David, P. P., Nelson, P. V., Sanders, D. C, "A humic acid improves growth of tomato seedlings in solution culture", J. Plant Nutr. 17, pp. 173-184. (1994). https://doi.org/10.1080/01904169409364717
  27. Gulser, F., Sonmez, F., Boysan, S.,"Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition", J. Environmental Biology, 31, pp. 873-876. (2010).
  28. Sanders, D. C., Prince, C., "Effect of humic-acid on vegetable seedling emergence", HortScience, 23, pp. 819-819. (1988).
  29. Reynolds, A. G., Wardle, D. A., Drought, B., Cantwell, R., "Gro-mate soil amendment improves growth of greenhouse grown Chardonnay grapevines", HortScience, 30, pp. 539-542. (1995).
  30. Sharif, M., Khattak, R. A., Sarir, M. S., "Effect of different levels of lignitic coal derived humic acid on growth of maize plants", Commun. Soil Sci. Plant Anal., 33, pp. 3567-3580. (2002). https://doi.org/10.1081/CSS-120015906
  31. Vaughan, D., "Possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions", Soil Biol. Biochem. 6, pp. 241-247. (1974). https://doi.org/10.1016/0038-0717(74)90058-3
  32. Cacco, G., Dell'Agnolla, G., "Plant growth regulator activity of soluble humic substances", Can. J. Soil Sci. 64, pp. 25-28. (1984).
  33. Russo, R. O., Berlyn, G. P., "The use of organic biostimulants to help low input sustainable agriculture", J. Sust. Agric., 1, pp. 19-42. (1990).
  34. Chen, Y., Aviad, T., "Effects of humic substances on plant growth", In: McCarthy, P., Calpp, C. E., Malcolm, R. L., Bloom, P. R. (eds.), "Humic Substances in Soil and Crop Sciences: Selected Readings", ASA and SSSA, Madison, WI, pp. 161-186. (1990).
  35. Chang, E. H., Chung, R. S., Tsai. Y. H., "Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population", Soil Sci. Plant Nutr., 53, pp. 132-140. (2007). https://doi.org/10.1111/j.1747-0765.2007.00122.x
  36. Park, K. C., Kim, Y. S., Kwon, O. H., Kwon, T. R., Park, S. G., "Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field", Korean J. Soil Sci. and Fertilizer, 41, pp. 118-125. (2008).
  37. Finneran, K. T., Forbush, H. M., VanPraagh, C. V.G., Lovley, D. R., "Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds", Int. J. Syst. Evol. Microbiol., 52, pp. 1929-1935. (2002).
  38. Grosser, R. J., Friedrich, M., Ward, D. M., Inskeep, W. P., "Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates", Appl. Environ. Microbiol., 66, pp. 2695-2702. (2000). https://doi.org/10.1128/AEM.66.7.2695-2702.2000
  39. Luijten, M., Weelink, S .A. B., Godschalk, B., Langenhoff, A. A. M., van Eekert, M. H. A., Schraa, G., Stams, A. J. M., "Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms", FEMS Microbiol. Ecol. 49, pp. 145-150. (2004). https://doi.org/10.1016/j.femsec.2004.01.015
  40. Balousha, M, Motelica-Heino, M, Le Coustumer, P., "Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity and residence time", Colloids Surf A Physicochem Eng Asp., 272, pp. 48-55. (2006). https://doi.org/10.1016/j.colsurfa.2005.07.010
  41. Kucerik, J, Smejkalova, D, Cechlovska, H, Pekar, M., "New insights into aggregation and conformational behavior of humic substances: Application of high resolution ultrasonic spectroscopy", Org Geochem., 38, pp. 2098-2110. (2007). https://doi.org/10.1016/j.orggeochem.2007.08.001
  42. Nelson, P. N., Su, N., "Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils", Aust. J. Soil Res., 48, pp. 210-217. (2010).
  43. Aitken, P .L., Moody, P. W., "The effect of valence and ionic strength on the measurement of pH buffer capacity", Aust. J. Soil Res., 32, pp.975-984. (1994). https://doi.org/10.1071/SR9940975
  44. Timms-Wilson, T. M., Ellis, R. J., Renwick, A., Rhodes, D. J., Mavrodi, D. V., Weller, D. M., Thomashow, L. S., Bailey, M. J., "Chomosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens", Molecular Plant-Microbe Interactions., 13, pp. 1293-1300. (2000). https://doi.org/10.1094/MPMI.2000.13.12.1293