DOI QR코드

DOI QR Code

A Study on Biogas Production from Low Rank Coal in a Column Experiment

저품위 석탄을 충전한 칼럼실험에서의 바이오가스 생산에 관한 연구

  • Yoon, Seok-Pyo (Department of Biological and Environmental Engineering, Semyung University Renewable Energy and Water Research Laboratory, College of Agriculture) ;
  • Lim, Hak-Sang (Department of Biological and Environmental Engineering, Semyung University Renewable Energy and Water Research Laboratory, College of Agriculture) ;
  • Yun, Yeo-Myeong (Forestry and Natural Resource Management, University of Hawaii at Hilo)
  • 윤석표 (세명대학교 바이오환경공학과) ;
  • 임학상 (세명대학교 바이오환경공학과) ;
  • 윤여명 (하와이대학교 농업산림자원관리학과)
  • Received : 2017.02.01
  • Accepted : 2017.02.28
  • Published : 2017.03.30

Abstract

In a column experiment with low rank coal, rice straw was additionally supplied to induce methane gas generation by microorganisms in the state of supplying microorganisms and nutrients, and long-term biogas production characteristics were observed. When the weight ratio of the rice straw to coal was 0.04 or less, there was no significant gas generation. At 0.08, the biogas was generated for about 90 days. However, the methane gas generation was only 5% compared with the vial test result at optimum condition. Therefore, in order to produce biogas in the coal deposit in situ, a reactor that operates at COD concentration of 2000 mg/L or more at a ratio of 1:3 or more of rice straw to coal should be installed on the ground or under the ground. Liquid from the column filled with coal and rice straw and a liquid from vial containing rice straw were analyzed by microbial community analysis using pyrosequencing method, and compared the dominant microbial species among the two samples. In terms of the uniformity and diversity of the bacteria, the coal-filled column showed various species distribution, which has shown to be a disadvantageous microbial distribution to methane production.

저급탄을 충전한 칼럼실험에서 미생물과 영양물질을 공급한 상태에서 미생물에 의한 메탄가스 발생을 유도하기 위하여 볏짚을 추가로 공급하여 장기간 바이오 가스 발생 특성을 관찰하였다. 충전한 석탄 대비 볏짚의 무게비가 0.04 이하에서는 유의미한 가스의 발생이 없었으며, 0.08에서는 약 90일간 바이오 가스가 발생되었으나, 최적 조건에서의 vial 실험 결과와 비교하면 투입한 볏짚 무게당 바이오 가스의 발생량이 5 % 수준에 불과하였다. 따라서 원위치에서 석탄을 채굴하지 않은 상태에서 바이오 가스를 생산하기 위해서는 볏짚 : 석탄의 비율이 1:3 이상의 조건에서 분해액의 COD 농도가 2000 mg/L 이상이 되도록 운전하는 반응조를 지상 혹은 지중에 설치할 필요가 있다. 또한 석탄과 볏짚을 충전한 칼럼실험 후의 지중수는 볏짚만을 투입한 vial 내 용액과 함께 파이로시퀀싱 방법으로 미생물 군집 분석을 실시하여 두 시료 간의 우점하는 미생물 종을 비교하였다. Bacteria의 균일도와 다양성 측면에서 석탄 충전탑이 보다 다양한 종분포를 이루고 있으며, 이는 결과적으로 메탄 생성에는 불리한 미생물 분포임을 나타낸다.

Keywords

References

  1. World Energy Resources, 2013 Survey, World Energy Council (2013).
  2. Wang, F., Jeon, J.Y., Lim, H.S., Yoon, S.P., "Basic study on the in-situ biogenic methane generation from low grade coal bed", J. of KORRA, 23(4), pp. 11-20. (2015).
  3. Jones, E.J.P., Voytek, M.A., Corum, M.D., Orem, W.H., "Simulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium", Applied and Environmental Microbiology, 76(21), pp. 7013-7022. (2010). https://doi.org/10.1128/AEM.00728-10
  4. Jones, E.J.P., Voytek, M.A., Warwick, P.D., Corum, M.D., Cohn, A., Bunnell, J.E., Clark, A.C., Orem,W.H., "Bioassay for estimating the biogenic methane-generating potential of coal samples", International Journal of Coal Geology, 76, pp. 138-150. (2008). https://doi.org/10.1016/j.coal.2008.05.011
  5. Gallagher, L.K., Glossner, A.W., Landkamer, L.L., Figueroa, L.A., Mandernack, K.W., Marr, J.M., "The effect of coal oxidation on methane production and microbial community structure in Powder River Basin coal", International Journal of Coal Geology, 115, pp. 71-78. (2013). https://doi.org/10.1016/j.coal.2013.03.005
  6. Opara, A., Adams, D.J., Free, M.L. McLennan, J., and Hamilton, J., "Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials", Applied and Environmental Microbiology, 96-97, pp. 1-8. (2012).
  7. Haider, R., Ghauri, M.A., SanFilipo, J.R,, Jones, E.J., Orem, W.H., Tatu, C.A., Akhtar, K., Akhtar, N., "Fungal degradation of coal as a pretreatment for methane production", Fuel, 104, pp. 717-725. (2013). https://doi.org/10.1016/j.fuel.2012.05.015
  8. Kruger, M., Beckmann, S., Engelen, B., Thielemann T., Cramer, B., Schippers. A., Cypionka, H., "Microbial methane formation from hard coal and timber in an abandoned coal mine", Geomicrobiology Journal, 25, pp. 315-321. (2008). https://doi.org/10.1080/01490450802258402
  9. Harris, S.H., Smith, R.L., and Barker, C.E., "Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals", International Journal of Coal Geology, 76, pp. 46-51. (2008). https://doi.org/10.1016/j.coal.2008.05.019
  10. Huang Z., Urynowicz, M.A., Colberg, P.J.S., "Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1", International Journal of Coal Geology, 115, pp. 97-105. (2013). https://doi.org/10.1016/j.coal.2013.01.012
  11. Yoon, S.P., Jeon, J.Y., Lim, H.S., "Stimulation of biogenic methane generation from lignite through supplying an external substrate", International Journal of Coal Geology, 162, pp. 39-44. (2016). https://doi.org/10.1016/j.coal.2016.05.009
  12. Shelton, D.R. and Tiedje, J.M., "General method for determining anaerobic biodegradation potential", Appl Environ Microbiol, 47(4), pp. 850-854. (1984).
  13. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 20th ed. (1998).
  14. Na, J.-G, Lee, M.-K, Yun, Y.-M, Moon, C, Kim, M.-S., Kim, D.-H., "Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing", Biochemical Engineering Journal, 112, pp. 241-248. (2016). https://doi.org/10.1016/j.bej.2016.04.030
  15. Green, M.S., Flanegan, K.C., Gilcrease, P.C., "Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A.", International Journal of Coal Geology, 76, pp. 34-45. (2008). https://doi.org/10.1016/j.coal.2008.05.001
  16. Kryachko, Y., Dong, X., Sensen, C.W., Voordouw, G. "Compositions of microbial communities associated with oil and water in a mesothermic oil field", Antonie van Leeuwenhoek, 101, 493-506. (2012). https://doi.org/10.1007/s10482-011-9658-y
  17. Mesle, M., Dromart, G., Haeseler, F., Oger, P.M., "Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities", Frontiers in Microbiology, 6, Article 589. (2015).
  18. Yun, Y.M., Kim, D.H., Cho, S.K., Shin, H.S., Jung, K.W., Kim, H.W., "Mitigation of Ammonia Inhibition by Internal Dilution in High-Rate Anaerobic Digestion of Food Waste Leachate and Evidences of Microbial Community Response", Biotechnology and Bioengineering, 113(9), 1892-1901. (2016). https://doi.org/10.1002/bit.25968
  19. Grundger, F., Jimenez, N., Thielemann, T., Straaten, N., Laders, T., Richnow, H.-H., Kruger, M., "Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany", Frontiers in Microbiology, 6, Article 200. (2015).
  20. Wawrik, B., Mendivelso, M., Parisi, V.A., Suflita, J.M., Davidova, I.A., Marks, C.R., Nostrand, J.D.Van, Liang, Y., Zhou, J., Huizinga, B.J., Strapoc', D., Callaghan, A.V., "Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin", FEMS Microbiol Ecol, 81, pp. 26-42. (2012). https://doi.org/10.1111/j.1574-6941.2011.01272.x