References
-
Goyal, N., Pant, K. K., and Gupta, R., "Hydrogen Production by Steam Reforming of Model Bio-oil Using Structured Ni/
$Al_2O_3$ Catalysts," Int. J. Hydrogen. Energy, 38, 921-933 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.080 - Heracleous, E., "Well-to-Wheels Analysis of Hydrogen Production from Bio-oil Reforming for Use in Internal Combustion Engines," Int. J. Hydrogen. Energy, 36, 11501-11511 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.052
- Maximiliano, M., Guido, W. S., Francese, C., and Daniel, M., "Life Cycle Inventory Analysis of Hydrogen Production by the Steam-Reforming Process: Comparison between Vegetable Oils and Fossil Fuels as Feedstock," Green Chem., 4, 414-423 (2002). https://doi.org/10.1039/B203742B
- Bbridgwater, A. V., "Review of Fast Pyrolysis of Biomass and Product Upgrading," Biomass Bioenergy, 38, 68-94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048
- Czernik, S., Evans, R., and French, R., "Hydrogen from Biomass Production by Steam Reforming of Biomass Pyrolysis Oil," Catal. Today, 129, 265-268 (2007). https://doi.org/10.1016/j.cattod.2006.08.071
-
Christensen, J. M., Mortense, P. M., Trane, R., Jensen, A. D., and Jense, P. A., "Effects of
$H_2S$ and Process Conditions in the Synthesis of Mixed Alcohols from Syngas over Alkali Promoted Cobalt-Molybdenum Sulfide," Appl. Catal., A., 366, 29-43 (2009). https://doi.org/10.1016/j.apcata.2009.06.034 - Raffelt, K., Henrich, E., Kogel, A., Stahl, R., Steinhardt, J., and Weirich, F., "The BTL2 Process of Biomass Utilization Entrained-Flow Gasification of Pyrolyzed Biomass Slurries," Appl. Biochem. Biotechnol., 129, 153-164 (2006). https://doi.org/10.1385/ABAB:129:1:153
- Song, C., "Fuel Processing for Low-Temperature and High-Temperature Fuel Cells: Challenges, and Opportunities for Sustainable Development in the 21st Century," Catal. Today, 77, 17-49 (2002). https://doi.org/10.1016/S0920-5861(02)00231-6
-
Li, D., Atake, I., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., "Self-Regenerative Activity of Ni/Mg(Al)O Catalysts with Trace Ru during Daily Startup and Shut-Down Operation of
$CH_4$ Steam Reforming," J. Catal., 250, 299-312 (2007). https://doi.org/10.1016/j.jcat.2007.06.002 -
Juan, J., Roman-Martinez, M., and Illan-Gomez, M., "Effect of Potassium Content in the Activity of K-Promoted Ni/
$Al_2O_3$ Catalysts for the Dry Reforming of Methane," Appl. Catal., A., 301, 9-15 (2006). https://doi.org/10.1016/j.apcata.2005.11.006 - Li, B., Kado, S., Mukainakano,Y., Miyazawa, T., Miyao, T., and Naito, S., "Surface Modification of Ni Catalysts with Trace Pt for Oxidative Steam Reforming of Methane," J. Catal., 245, 144-155 (2007). https://doi.org/10.1016/j.jcat.2006.10.004
- Mukainakano, Y., Li, B., Kado, S., Miyazawa, T., Okumura, K., and Miyao, T., "Surface Modification of Ni Catalysts with Trace Pd and Rh for Oxidative Steam Reforming of Methane," Appl. Catal., A., 318, 252-264 (2007). https://doi.org/10.1016/j.apcata.2006.11.017
- Tomishige, K., Asadullah, M., and Kunimori, K., "Novel Catalysts for Gasification of Biomass with High Conversion Efficiency," Catal. Surv. Asia., 7, 219-233 (2003). https://doi.org/10.1023/B:CATS.0000008162.69178.17
- Aingeru, R., Beatriz, V., Lide O. A., Andres, T. A., Javier, B., and Ana, G. G., "Hydrogen Production by Steam Reforming of Bio-Oil/Bio-Ethanol Mixtures in an Continuous Thermal-Catalytic Process," Int. J. Hydrogen Energy, 39, 6889-6898 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.137
- Fangbai, Z., Ning, W., Lu, Y., Mao, L., and Lihong, H., "Ni-Co Bimetallic MgO-Based Catalysts for Hydrogen Production via Steam Reforming of Acetic Acid from Bio-Oil," Int. J. Hydrogen Energy, 39, 18688-18694 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.025
- Kechagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A., and Vasalos, I. A., "Hydrogen Production via Steam Reforming of the Aqueous Phase of Bio-Oil in a Fixed Bed Reactor," Energy Fuels, 20, 2155-2163 (2006). https://doi.org/10.1021/ef060083q
- Matsumura, Y., and Nakamori, T., "Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature," Appl. Catal., A., 258, 107-114 (2004). https://doi.org/10.1016/j.apcata.2003.08.009
- Kan, T., Xiong, J., Li, X., Ye, T., Yuan, L., and Torimoto, Y., "High Efficient Production of Hydrogen from Crude Bio-Oil via an Integrative Process between Gasification and Current Enhanced Catalytic Steam Reforming," Int. J. Hydrogen Energy, 35, 518-532 (2010).
- Davidian, T., Guilhaume, N., Iojoiu, E., Provendier, H., and Mirodatos, C., "Hydrogen Production from Crude Pyrolysis Oil by a Sequential Catalytic Process," Appl. Catal., B., 73, 116-127 (2007). https://doi.org/10.1016/j.apcatb.2006.06.014
- Domine, M. E., Iojoiu, E. E., Davidian, T., Huilhaume, N., and Mirodatos, C., "Hydrogen Production from Biomass-Derived Oil over Monolithic Pt- and Rh-Based Catalysts Using Steam Reforming and Sequential Cracking Processes," Catal. Today, 133-135, 565-573 (2008). https://doi.org/10.1016/j.cattod.2007.12.062
- Song, M. K., Pham, H. D., Seon, J., and Woo, H. C., "Marine Brown Algae: A Conundrum Answer for Sustainable Biofuels Production," Renew. Sust. Energ. Rev., 50, 782-792 (2015). https://doi.org/10.1016/j.rser.2015.05.021
-
Andersson, S., and Wadsley, A. D., "Five Co-Ordinated Titanium in
$K_2Ti_2O_5$ ," Nature, 187, 499-500 (1960). https://doi.org/10.1038/187499a0 -
Kim, T., Song, K. H., Yoon, G., and Chung, J. S., "Steam Reforming of n-Dodecane over
$K_2Ti_2O_5$ -added Ni-Alumina and Ni-Zirconia (YSZ) Catalysts," Int. J. Hydrogen Energy, 41, 17922-7932 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.009 -
Lee, S. Y., Lim, H., and Woo, H. C., "Catalytic Activity and Characterizations of Ni/
$K_2Ti_xO_y$ -$Al_2O_3$ Catalyst for Steam Methane Reforming," Int. J. Hydrogen Energy, 39, 17645-17655 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.014 - Ping, L., Qingli, X., Ming, Z., Lihong, L., Suping, Z., and Yongjie, Y., "Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors," Chem. Eng. Technol., 12, 2021-2028 (2010).
- Park, Y. B., Lim, H., and Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. En. Res., 54, 94-100 (2016). https://doi.org/10.9713/kcer.2016.54.1.94
-
Vizcaino, A. J., Arena, P., Baronetti, G., Carrero, A., Calles, J. A., Laborde, M. A., and Amadeo, N., "Ethanol Steam Reforming on Ni/
$Al_2O_3$ Catalysts: Effect of Mg Addition," Int. J. Hydrogen Energy, 33, 3489-3492 (2007). - Swartz, S. L., "Nano-Scale Water-Gas-Shift Catalysts," DOE CRAFT Program (2003).
-
Dong, W. S., Roh, H. S., Jun, K. W., Park, S. E., and Oh, Y. S., "Methane Reforming over Ni/Ce-
$ZrO_2$ Catalysts: Effect of Nickel Content," Appl. Catal., A., 226, 63-72 (2002). https://doi.org/10.1016/S0926-860X(01)00883-3
Cited by
- Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons vol.37, pp.6, 2017, https://doi.org/10.1007/s11814-020-0508-3