DOI QR코드

DOI QR Code

Removal of Hydrogen Sulfide by Using Sodium Carbonate Impregnated Activated Carbon Fiber

탄산나트륨 첨착섬유활성탄을 이용한 황화수소의 제거

  • Received : 2017.01.12
  • Accepted : 2017.02.15
  • Published : 2017.03.31

Abstract

We prepared sodium carbonate impregnated activated carbon fiber and evaluated its availability for hydrogen sulfide removal by the comparison with the counterpart, sodium carbonate granular impregnated activated carbon. The sodium carbonate impregnated concentration and immersion duration were chosen as two primary parameters. First, the hydrogen sulfide adsorption capacity increased in proportion to the impregnated concentration up to 3 wt%, above which the sodium carbonate impregnated amount rarely showed an increase due to the pore filling effect for both cases. The optimal impregnated concentration was thus set to 3 wt%. Meanwhile, impregnated activated carbon fiber required only half of the immersion duration compared with granular impregnated activated carbon, while showing a 30% increase on the hydrogen sulfide removal capacity. The greater specific area of impregnated activated carbon fiber explained it. In conclusion, we evaluated advantage of preparation time and improved hydrogen sulfide adsorption capacity by impregnate sodium carbonate, which is capable of reacting with hydrogen sulfide chemically, onto the activated carbon fiber with improved specific area.

본 연구에서는 섬유활성탄에 탄산나트륨을 첨착제로 이용하여 탄산나트륨 첨착섬유활성탄을 제조하고 동일조건에서 제조한 탄산나트륨 첨착입상활성탄과 황화수소 제거 성능을 비교한 후 그 활용가능성을 검토하고자 하였다. 첨착용액의 농도와 첨착시간을 변수로 하여 탄산나트륨 첨착섬유활성탄과 탄산나트륨 첨착입상활성탄의 흡착능을 구하였는데 먼저 두 경우 모두 첨착용액의 농도에 비례하여 탄산나트륨의 첨착되는 양도 증가하나 3 wt%이상에서는 기공충전(pore filling) 현상으로 첨착양에 변화가 없었다. 따라서 황화수소 제거를 위한 탄산나트륨 첨착섬유활성탄과 탄산나트륨 첨착입상활성탄의 제조시 최적의 탄산나트륨 용액 농도는 3 wt%인 것으로 판단되었다. 또한 탄산나트륨 첨착섬유활성탄의 경우 탄산나트륨 첨착을 위한 담지시간이 탄산나트륨 첨착입상활성탄에 비하여 2배 가까이 빠른 것으로 나타났다. 황화수소 제거효율은 탄산나트륨 첨착섬유활성탄이 탄산나트륨 첨착입상활성탄에 비하여 30% 이상 증가하였고 이는 비표면적의 측정결과로 설명되었다. 결과적으로 향상된 비표면적을 가진 섬유활성탄에 황화수소와 화학적으로 반응하는 탄산나트륨을 첨착하여 제조상 시간적 이점과 향상된 황화수소 흡착능을 확인할 수 있었다.

Keywords

References

  1. Jung, H. S., and Lee, S. H., "Direction of Sharing of Environment Basic Facilities Installation and Operation between the Governments," Korea Environ. Technol. Res. Inst., Report RE-01, 1-80 (1995).
  2. Jung, K. C., "Industrial Poisoning Handbook," ShinKwang Publishing Co., Chap. 3 (1995).
  3. Huh, M., "Odor Control Technology and Estimation," Korean J. Odor Res. Eng., 2(1), 1-13 (2003).
  4. Ikeda, H., Asaba, H., and Takeuchi, Y., "Removal of $H_2S$, $CH_3SH$ and $(CH_3)_3N$ from Air by Use of Chemically Treated Activated Carbon," J. Chem. Eng. Japan, 21(1), 91-97 (1988). https://doi.org/10.1252/jcej.21.91
  5. Lee, J.-J., "Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Quinoline Yellow by Granular Activated Carbon," Clean Technol., 20(1) 35-41 (2014). https://doi.org/10.7464/ksct.2014.20.1.035
  6. Tanada S., Boki K., Sakaguchi K., Kitakouji M., Matsumoto K., and Yamada Y., "Adsorption of Hydrogen Sulfide on N-containing Activated Carbon," Chem. Pharm. Bull., 29(6), 1736-1742 (1981). https://doi.org/10.1248/cpb.29.1736
  7. Lee, S., and Kim, D. J., "Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam," Clean Technol., 18(2), 209-215 (2012). https://doi.org/10.7464/ksct.2012.18.2.209
  8. Kwon, S. Y., An, J. M., and Park, S. J., "Studies on the Treatment of Methylmercaptan by Using the Activated Carbon Fiber," Proc. Symposium of Korean Soc. Environ. Health, 10, 309-310 (2013).
  9. Park, S. J., "Removal of Sulfur-containing Malodorous Mixed Gases by Activated Carbon Fiber," Korean J. Odor Res. Eng., 12(3), 135-142 (2013). https://doi.org/10.11161/jkosore.2013.12.3.135
  10. Jo, W.-K., Hwang, E.-S., and Yang, S.-B., "Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant," Clean Technol., 17(1), 48-55 (2011). https://doi.org/10.7464/KSCT.2011.17.1.048
  11. Han, M. H., and Huh, M. W., "Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution (2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes," J. Korean SOC. Dyers Finishers, 19(3), 26-36 (2007).
  12. Klein, J., and Henning, K.-D., "Catalytic Oxidation of Hydrogen Sulfides on Activated Carbons," Fuel, 63(8), 1064-1067 (1984). https://doi.org/10.1016/0016-2361(84)90189-3

Cited by

  1. Characteristic of odor from feed manufactory and evaluation of odor reduction efficiency using chemical scrubber vol.17, pp.4, 2017, https://doi.org/10.15250/joie.2018.17.4.389