DOI QR코드

DOI QR Code

고효율 다결정 실리콘 태양전지 제작을 위한 나노크기의 피라미드 텍스쳐 제작

Nanoscale Pyramid Texture for High Efficiency Multi-Crystalline Silicon Solar Cells

  • 허종 (한국생산기술연구원 광에너지융합그룹) ;
  • 박민준 (한국생산기술연구원 광에너지융합그룹) ;
  • 지홍섭 (한국생산기술연구원 광에너지융합그룹) ;
  • 김진혁 (전남대학교 신소재공학과) ;
  • 정채환 (한국생산기술연구원 광에너지융합그룹)
  • Heo, Jong (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology) ;
  • Park, Min-Joon (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology) ;
  • Jee, Hong sub (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology) ;
  • Kim, Jin Hyeok (Department of Material Science and Engineering, Chonnam National University) ;
  • Jeong, Chaehwan (Applied Optics and Energy Research Group, Korea Institute of Industrial Technology)
  • 투고 : 2016.11.21
  • 심사 : 2016.12.23
  • 발행 : 2017.03.31

초록

Nanoscale textured black silicon has attracted intensive attention due to its great potential as applications in multicrystalline silicon-based solar cells. It absorbs sunlight over a broad range of wavelengths but introduces large recombination centers, non-uniform doping into cell. In this study, we present a metal-assisted chemical etching technique plus alkaline etching process to fabricate nanoscale pyramid structures with optimized condition. To make the structures, silver nanoparticles-loaded mc-Si wafer was submerged into $H_2O_2/HF$ solution first for nanohole texturing the wafer and textured wafer etched again with KOH solution for making nanoscale pyramid structures. The average reflectivity (350-1050 nm) is about 8.42% with anti-reflection coating.

키워드

참고문헌

  1. C. Battaglia, A. Cuevas, S. D. Wolf, "High-efficiency crystalline silicon solar cells : status and perspectives" Energy Environ, Sci., Vo1. 9, pp. 1552-1576, 2016.
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency tables" Prog. Photovoltaics, Vol. 24, pp. 3-11, 2016. https://doi.org/10.1002/pip.2728
  3. X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X. F. Wang, M. Shen, X. Su, "18.45%-efficiency multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture" Adv. Funct. Mater., Vol. 24, pp. 6708-6716, 2014. https://doi.org/10.1002/adfm.201401589
  4. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur, "Microstructuring of silicon with femtosecond laser pulses" Appl. Phys. Lett., Vol. 73, pp. 1673-1675, 1998. https://doi.org/10.1063/1.122241
  5. J. Yoo, G. Yu, J. Yi, "Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE)" Sol. Energy Mat. Sol. Cells, Vol. 2, pp. 2-6, 2011.
  6. F. Toor, H. M. Branz, M. R. Page, K. M. Jones, H. C. Yuan, Appl. Phys. Lett., Vol. 99, pp. 103501-103504, 2011. https://doi.org/10.1063/1.3636105
  7. J. Oh, H. C. Yuan, H. M. Branz, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures" Nat. Nanotechnol., Vol. 7, pp. 743-748, 2012. https://doi.org/10.1038/nnano.2012.166
  8. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. T. Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, "Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications" Nat. Mater., Vol. 9, pp. 239-244, 2010. https://doi.org/10.1038/nmat2635
  9. J. Schmidt, M. Kerr, "Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicom nitride" Sol. Energ. Mat. Sol. Cells, Vol. 65, pp. 585-591, 2001. https://doi.org/10.1016/S0927-0248(00)00145-8