DOI QR코드

DOI QR Code

외부 교란에 대한 Burke-Schumann 화염에서 형상과 열방출량을 통한 응답 특성 파악

The Response of the Burke-Schumann Flame to External Excitation with Flame Shape and Heat Release

  • 김태성 (서울대학교 기계항공공학부) ;
  • 안명근 (서울대학교 기계항공공학부) ;
  • 황정재 (한국기계연구원 환경.에너지기계연구본부 환경기계시스템연구실) ;
  • 정찬영 (서울대학교 기계항공공학부) ;
  • 권오채 (성균관대학교 기계공학부) ;
  • 윤영빈 (서울대학교 기계항공공학부 및 항공우주신기술연구소)
  • Kim, Taesung (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Ahn, Myunggeun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Hwang, Jeongjae (Department of Eco-Machinery System, Korea Institute of Machinery and Materials) ;
  • Jeong, Chanyeong (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kwon, Oh Chae (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Yoon, Youngbin (Department of Mechanical and Aerospace Engineering and the Institute of Advanced Aerospace Technology, Seoul National University)
  • 투고 : 2017.01.31
  • 심사 : 2017.03.05
  • 발행 : 2017.03.30

초록

This paper shows the dynamics of the Burke-Schumann flame. To show flame dynamics, this paper measures the flame surface and heat release rate. The flame shape is divided into three types with forcing frequencies. When the forcing frequency is lower than 120 Hz, the upper region of flame is cut. The flame is stagnant with 220 to 280 Hz forcing frequencies. The rest conditions of forcing frequencies make the connected wave shape of flame. The heat release rate is expressed by the flame transfer function. The gain of the flame transfer function is similar with the oscillation magnitude of the flame area except for flame cutting conditions. The flame is cut because the fuel is not supplied to upper flame region.

키워드

참고문헌

  1. J. Kim, M. Yoon and D. Kim, Combustion Stability Analysis using Feedbavk Transfer Function, J. Korean Soc. Combust., 21(3) (2016) 24-31. https://doi.org/10.15231/jksc.2016.21.3.024
  2. S. Ducruix, D. Durox and S. Candel, Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame, Proc. Combust. Inst., 28 (2000) 765-773. https://doi.org/10.1016/S0082-0784(00)80279-9
  3. T. Schuller, D. Durox and S. Candel, A Unified Model for the Prediction of Laminar Flame Transfer Functions : Comparisons between Conical and V-flame Dynamics, Combust. Flame, 134 (2003) 21-34. https://doi.org/10.1016/S0010-2180(03)00042-7
  4. N. Noiray, D. Durox, T. Schuller and S. Candel, A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function, J. Fluid Mech., 615 (2008) 139-167. https://doi.org/10.1017/S0022112008003613
  5. D. Kim, J.G. Lee, B.D. Quay, D.A. Santavicca, K. Kim and S. Srinivasan, Effect of Flame Structure on the Flame Transfer Function is a Premixed Gas Turbine Combustor, J. Eng. Gas Turbines Power, 132 (2010) 021501. https://doi.org/10.1115/1.2904892
  6. K.T. Kim, J.G. Lee, B.D. Quay and D.A. Santavicca, Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations, Combust. Flame, 157 (2010) 1731-1744. https://doi.org/10.1016/j.combustflame.2010.04.006
  7. S. Farhat, D. Kleiner and Y. Zhang, Jet Diffusion Flame Characteristics in a Loudspeaker-induced Standing wave, Combust. Flame, 142 (2005) 317-323. https://doi.org/10.1016/j.combustflame.2005.04.010
  8. M. Kim, Y. Choi, J. Oh and Y. Yoon, Flame-vortex Interaction and Mixing Behaviors of Turbulent Non-premixed Jet Flames under Acoustic Forcing, Combust. Flame, 156 (2009) 2252-2263. https://doi.org/10.1016/j.combustflame.2009.08.004
  9. M. Tyagi, N. Jamadar and S.R. Chakravarthy, Oscillatory Response of an Idealized Two-dimensional Diffusion Flame: Analytical and Numerical Study, Combust. Flame, 149 (2007) 271-285. https://doi.org/10.1016/j.combustflame.2006.12.020
  10. M. Tyagi, S.R. Chakravarthy and R.I. Sujith, Unsteady Combustion Response of a Ducted Non-premixed Flame and Acoustic Coupling, Combust. Theory Model., 11(2) (2007) 205-226. https://doi.org/10.1080/13647830600733481
  11. Z. Yao and M. Zhu, A Distributed Transfer Function for Non-premixed Combustion Oscillations, Combust. Sci. Technol., 184 (2012) 767-790. https://doi.org/10.1080/00102202.2012.666297
  12. K. Balrsubramanian and R.I. Sujith, Nonlinear Response of Diffusion Flames to Uniform Velocity Disturbances, Combust. Sci. Technol., 180 (2008) 418-436. https://doi.org/10.1080/00102200701741178
  13. N. Magina, D. Shin, V. Acharya and T. Lieuwen, Response of Non-premixed Flames to Bulk Flow Perturbations, Proc. Combust. Inst., 34 (2013) 963-971. https://doi.org/10.1016/j.proci.2012.06.155
  14. N. Magina, V. Acharya, T. Sun and T. Lieuwen, Propagation, Dissipation and Dispersion of Disturbances on Harmonically Forced, Non-premixed Flames, Proc. Combust. Inst., 35 (2015) 1097-1105. https://doi.org/10.1016/j.proci.2014.07.050
  15. N. Magina and T. Lieuwen, Effect of Axial Diffusion on the Response of Diffusion Flames to Axial Flow Perturbations, Combust. Flame, 167 (2016) 395-408. https://doi.org/10.1016/j.combustflame.2016.01.012
  16. T. Kim, M. Ahn, J. Hwang, S. Kim and Y. Yoon, The Experimental Investigation on the Response of the Burke-Schumann Flame to Acoustic Excitation, Proc. Combust. Inst., 36 (2017) 1629-1636. https://doi.org/10.1016/j.proci.2016.06.116