DOI QR코드

DOI QR Code

대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산

Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae

  • 장지웅 (고려대학교 화공생명공학과) ;
  • 정휘민 (고려대학교 화공생명공학과) ;
  • 김덕균 (고려대학교 화공생명공학과) ;
  • 오민규 (고려대학교 화공생명공학과)
  • Jang, Ji-Woong (Department of Chemical and Biological Engineering, Korea University) ;
  • Jung, Hwi-Min (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Duck Gyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
  • 투고 : 2016.09.14
  • 심사 : 2016.12.20
  • 발행 : 2017.04.01

초록

아세토인(acetoin)은 식품과 화학산업에서 플랫폼 물질로 이용되며 산업적으로 다양한 응용이 가능한 물질이다. 본 연구에서는 대사공학(metabolic engineering)을 이용하여 아세토인의 생산량이 증가한 재조합 Klebsiella pneumoniae를 구축하였다. 우선 2,3-부탄디올(2,3-butanediol)생산을 위해 제작되었던 재조합 K. pneumoniae (KMK-05)에서 두 가지 2,3-butanediol dehydrogenase (budC, dhaD)를 유전체에서 제거하여 아세토인 생산량을 늘리고, 전사인자 중 하나인 AcoK를 제거하여 아세토인을 분해하는 효소의 발현량을 줄였다. 그리고 NADH oxidase를 발현시켜 세포 내 산화 환원 균형(redox balance)을 맞춰 대사흐름을 개선하였다. 이렇게 대사공학을 통해 구축된 재조합 Klebsiella pneumoniae(KJW-03-nox)로 아세토인 생산량과 수율을 높였고, 36시간 동안의 유가식 배양을 진행하여 51 g/L의 아세토인 농도와 최대 생산성 2.6 g/L/h을 달성하였다.

Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.

키워드

참고문헌

  1. Xiao, Z., Ma, C., Xu, P. and Lu, J. R., "Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium," PloS. One, 4, e5627(2009). https://doi.org/10.1371/journal.pone.0005627
  2. Xiao, Z. and Lu. J. R., "Strategies for Enhancing Fermentative Production of Acetoin: a Review," Biotechnol. Adv., 32, 492-503 (2014). https://doi.org/10.1016/j.biotechadv.2014.01.002
  3. Xu, H., Jia, S. R. and Liu, J. J., "Development of a Mutant Strain of Bacillus subtilis Showing Enhanced Production of Acetoin," Afr. J. Biotechnol., 10, 779-788(2011).
  4. Sun, J. N., Zhang, L. Y., Rao, B., Han, Y. B., Chu, J., Zhu, J. W., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 using Statistical Optimization and a Two-stage Agitation Speed Control Strategy," Biotechnol. Bioprocess. Eng., 17, 598-605(2012). https://doi.org/10.1007/s12257-011-0587-4
  5. Teixeira, R. M., Cavalheiro, D., Ninow, J. L. and Furigo, A., "Optimization of Acetoin Production by Hanseniaspora guilliermondii Using Experimental Design," Braz. J. Chem. Eng., 19, 181-186 (2002). https://doi.org/10.1590/S0104-66322002000200014
  6. Zhang, L. Y., Chen, S., Xie, H. B., Tian, Y. T. and Hu, K. H., "Efficient Acetoin Production by Optimization of Medium Components and Oxygen Supply Control Using a Newly Isolated Paenibacillus polymyxa CS107," J. Chem. Technol. Biotechnol., 87, 1551-1557(2012). https://doi.org/10.1002/jctb.3791
  7. Wang, D. X., Zhou, J. D., Chen, C., Wei, D., Shi, J. P., Jiang, B., Liu, P. F. and Hao, J., "R-Acetoin Accumulation and Dissimilation in Klebsiella pneumoniae," J. Ind. Microbiol. Biotechnol., 42, 1105-1115(2015). https://doi.org/10.1007/s10295-015-1638-1
  8. Zhang, L. J., Liu, Q., Ge, Y., Li, L., Gao, C., Xu, P. and Ma, C., "Biotechnological Production of Acetoin, a Bio-based Platform Chemical, from a Lignocellulosic Resource by Metabolically Engineered Enterobacter cloacae," Green. Chem., 18, 1560-1570 (2016). https://doi.org/10.1039/C5GC01638J
  9. Jung, M. Y., Mazumdar, S., Shin, S. H., Yang, K. S., Lee, J. and Oh, M. K., "Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene," Appl. Environ. Microbiol., 80, 6195-6203(2014). https://doi.org/10.1128/AEM.02069-14
  10. Shin, S. H., Kim, S., Kim, J. Y., Lee, S., Um, Y., Oh, M. K., Kim, Y. R., Lee, J. and Yang, K. S., "Complete Genome Sequencing of the 2,3-Butanediol-Producing Klebsiella pneumonia KCTC 2242," J. Bacteriol., 194, 2736-2737(2012). https://doi.org/10.1128/JB.00027-12
  11. Jun S. A., Kong S. W., Sang, B. I. and Um, Y., "Optimization of Culture Conditions for 1,3-propanediol Production from Glycerol Using Klebsiella pneumoniae," Korean Chem Eng Res., 47(6), 768-774(2009).
  12. Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., Tang, H. and Xu, P., "Enhanced 2,3-Butanediol Production by Klebsiella pneumoniae SDM," Appl. Microbiol. Biotechnol., 82, 49-57(2009). https://doi.org/10.1007/s00253-008-1732-7
  13. Jung, S. G., Jang, J. H., Kim, A. Y., Lim, M. C., Kim, B., Lee, J. and Kim, Y. R., "Removal of Pathogenic Factors from 2,3-Butanediol- Producing Klebsiella species by Inactivating Virulence-Related wabG gene," Appl. Microbiol. Biotechnol., 97, 1997-2007(2013). https://doi.org/10.1007/s00253-012-4284-9
  14. Izquierdo, L., Coderch, N., Pique, N., Bedini, E., Corsaro, M. M., Merino, S., Fresno, S., Tomas, J. M. and Regue, M., "The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence," J. Bacteriol., 185, 7213-7221 (2003). https://doi.org/10.1128/JB.185.24.7213-7221.2003
  15. Wang, Y., Tao, F. and Xu, P., "Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae," J. Biol. Chem., 289, 6080-6090(2014). https://doi.org/10.1074/jbc.M113.525535
  16. Xiao, Z. J. and Xu, P., "Acetoin Metabolism in Bacteria," Crit. Rev. Microbiol., 33, 127-140(2007). https://doi.org/10.1080/10408410701364604
  17. Hsu, J. L., Peng, H. L. and Chang, H. Y., "The ATP-binding Motif in AcoK is Required for Regulation of Acetoin Catabolism in Klebsiella pneumoniae CG43," Biochem. Biophys. Res. Commun., 376, 121-127(2008). https://doi.org/10.1016/j.bbrc.2008.08.103
  18. Sun, J. A., Zhang, L. Y., Rao, Ben., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 with Expression of a Water-Forming NADH oxidase," Bioresour. Technol., 119, 94-98(2012). https://doi.org/10.1016/j.biortech.2012.05.108

피인용 문헌

  1. Studies on structure-function relationships of acetolactate decarboxylase from Enterobacter cloacae vol.8, pp.68, 2018, https://doi.org/10.1039/c8ra07379a
  2. Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries vol.24, pp.1, 2017, https://doi.org/10.1007/s12257-018-0346-x