• 제목/요약/키워드: 2,3-Butanediol dehydrogenase

검색결과 5건 처리시간 0.018초

대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산 (Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae)

  • 장지웅;정휘민;김덕균;오민규
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.237-241
    • /
    • 2017
  • 아세토인(acetoin)은 식품과 화학산업에서 플랫폼 물질로 이용되며 산업적으로 다양한 응용이 가능한 물질이다. 본 연구에서는 대사공학(metabolic engineering)을 이용하여 아세토인의 생산량이 증가한 재조합 Klebsiella pneumoniae를 구축하였다. 우선 2,3-부탄디올(2,3-butanediol)생산을 위해 제작되었던 재조합 K. pneumoniae (KMK-05)에서 두 가지 2,3-butanediol dehydrogenase (budC, dhaD)를 유전체에서 제거하여 아세토인 생산량을 늘리고, 전사인자 중 하나인 AcoK를 제거하여 아세토인을 분해하는 효소의 발현량을 줄였다. 그리고 NADH oxidase를 발현시켜 세포 내 산화 환원 균형(redox balance)을 맞춰 대사흐름을 개선하였다. 이렇게 대사공학을 통해 구축된 재조합 Klebsiella pneumoniae(KJW-03-nox)로 아세토인 생산량과 수율을 높였고, 36시간 동안의 유가식 배양을 진행하여 51 g/L의 아세토인 농도와 최대 생산성 2.6 g/L/h을 달성하였다.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Enhanced 2,3-Butanediol Production in Recombinant Klebsiella pneumoniae via Overexpression of Synthesis-Related Genes

  • Kim, Borim;Lee, Soojin;Park, Joohong;Lu, Mingshou;Oh, Minkyu;Kim, Youngrok;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1258-1263
    • /
    • 2012
  • 2,3-Butanediol (2,3-BD) is a major metabolite produced by Klebsiella pneumoniae KCTC2242, which is a important chemical with wide applications. Three genes important for 2,3-BD biosynthesis acetolactate decarboxylase (budA), acetolactate synthase (budB), and alcohol dehydrogenase (budC) were identified in K. pneumoniae genomic DNA. With the goal of enhancing 2,3-BD production, these genes were cloned into pUC18K expression vectors containing the lacZ promoter and the kanamycin resistance gene to generate plasmids pSB1-7. The plasmids were then introduced into K. pneumoniae using electroporation. All strains were incubated in flask experiments and 2,3-BD production was increased by 60% in recombinant bacteria harboring pSB04 (budA and budB genes), compared with the parental strain K. pneumoniae KCTC2242. The maximum 2,3-BD production level achieved through fed-batch fermentation with K. pneumoniae SGJSB04 was 101.53 g/l over 40 h with a productivity of 2.54 g/l.h. These results suggest that overexpression of 2,3-BD synthesis-related genes can enhance 2,3-BD production in K. pneumoniae by fermentation.

Biochemical and Molecular Characterization of Glycerol Dehydrogenase from Klebsiella pneumoniae

  • Ko, Gyeong Soo;Nguyen, Quyet Thang;Kim, Do Hyeon;Yang, Jin Kuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.271-278
    • /
    • 2020
  • Glycerol dehydrogenase (GlyDH) catalyzes the oxidation of glycerol to dihydroxyacetone (DHA), which is the first step in the glycerol metabolism pathway. GlyDH has attracted great interest for its potential industrial applications, since DHA is a precursor for the synthesis of many commercially valuable chemicals and various drugs. In this study, GlyDH from Klebsiella pneumoniae (KpGlyDH) was overexpressed in E. coli and purified to homogeneity for biochemical and molecular characterization. KpGlyDH exhibits an exclusive preference for NAD+ over NADP+. The enzymatic activity of KpGlyDH is maximal at pH 8.6 and pH 10.0. Of the three common polyol substrates, KpGlyDH showed the highest kcat/Km value for glycerol, which is three times higher than for racemic 2,3-butanediol and 32 times higher than for ethylene glycol. The kcat value for glycerol oxidation is notably high at 87.1 ± 11.3 sec-1. KpGlyDH was shown to exist in an equilibrium between two different oligomeric states, octamer and hexadecamer, by size-exclusion chromatography analysis. KpGlyDH is structurally thermostable, with a Tm of 83.4℃, in thermal denaturation experiment using circular dichroism spectroscopy. The biochemical and biophysical characteristics of KpGlyDH revealed in this study should provide the basis for future research on its glycerol metabolism and possible use in industrial applications.

N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1

  • Jin, Wensong;Lin, Hui;Gao, Huifang;Guo, Zewang;Li, Jiahuan;Xu, Quanming;Sun, Shujing;Hu, Kaihui;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.596-606
    • /
    • 2019
  • N-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ${\Delta}swrI$ with or without supplementing exogenous N-hexanoyl-L-homoserine lactone ($C_6-HSL$) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing $C_6-HSL$. Furthermore, fermentation product analysis indicated that ${\Delta}swrI$ could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ${\Delta}swrI$ appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, ${\alpha}$-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.