DOI QR코드

DOI QR Code

Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach

유도적 돌연변이 유발 방법을 통한 1-ethyl-3-methylimidazolium acetate에 대해 내성을 갖는 돌연변이 효모 선별

  • Lee, Yoo-Jin (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University) ;
  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
  • Received : 2017.02.23
  • Accepted : 2017.03.21
  • Published : 2017.03.28

Abstract

Cellulosic biomass is a renewable source for biofuel production from non-edible biomass. An optimized pretreatment process is required for the efficient utilization of cellulosic biomass. Among various pretreatment processes, the use of ionic liquids has been reported recently. However, the residual ionic liquid after pretreatment acts as an inhibitor of microbial fermentation. Recently, we isolated mutant Saccharomyces cerevisiae strains resistant to the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) by using a directed evolutionary approach. When 3% [EMIM][Ac] was added to a medium containing 80 g/l of glucose, mutants D452-B2 and D452-S3 produced 35.6 g/l and 36.3 g/l of ethanol, respectively, for 18 h while the parental strain (S. cerevisiae D452-2) produced 1.3 g/l of ethanol. Thus, these mutant S. cerevisiae strains might prove advantageous when ionic liquids are used for biofuel production from cellulosic biomass.

목질계 바이오 매스 전처리에 사용되는 ionic liquid는 전처리 후 100% 회수되지 않아 잔존하는 ionic liquid의 독성이 직접적으로 미생물 균주의 생육에 나쁜 영향을 미쳐 에탄올 발효의 수율 및 생산성을 저해하는 문제를 가지고 있다. 본 연구에서는 ionic liquid에 저해를 받지 않으며 높은 ethanol 생산 효율을 가진 균주를 얻고자 유도적 돌연변이 유발 실험을 진행하였다. 선별된 돌연변이 균주 D452-B2와 D452-S3는 3% [EMIM][Ac]가 포함된 배지에서 glucose 소비속도는 $4.5g{\cdot}l^{-1}{\cdot}h^{-1}$$4.4g{\cdot}l^{-1}{\cdot}h^{-1}$로 모균주인 S. cerevisiae D452-2 균주에 비해 6배 가량 증가하였으며, ethanol 생산성은 각각 $1.99g{\cdot}l^{-1}{\cdot}h^{-1}$$2.0g{\cdot}l^{-1}{\cdot}h^{-1}$로 27배 가량 증가하였다.

Keywords

References

  1. Tye YY, Lee KT, Abdullah WNW, Leh CP. 2016. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev. 60: 155-172. https://doi.org/10.1016/j.rser.2016.01.072
  2. Ajanovic A, Haas R. 2014. On the future prospects and limits of biofuels in Brazil, the US and EU. Appl. Energy 135: 730-737. https://doi.org/10.1016/j.apenergy.2014.07.001
  3. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol. 135: 191-198. https://doi.org/10.1016/j.biortech.2012.10.015
  4. Sanchez OJ, Cardona CA. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  5. Yamada R, Nakashima K, Asai-Nakashima N, Tokuhara W, Ishida N, Katahira S, et al. 2016. Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts. Appl. Biochem. Biotechnol. in press.
  6. Shirkavand E, Baroutian S, Gapes DJ, Young BR. 2016. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment-A review. Renew Sustain Energy Rev. 54: 217-234. https://doi.org/10.1016/j.rser.2015.10.003
  7. Su C-H, Chung M-H, Hsieh H-J, Chang Y-K, Ding J-C, Wu H-M. 2012. Enzymatic hydrolysis of lignocellulosic biomass in ionic liquid media for fermentable sugar production. J. Taiwan Inst. Chem. Eng. 43: 573-577. https://doi.org/10.1016/j.jtice.2012.02.001
  8. Chakraborty S, Gaikwad A. 2010. Mixing effects in cellulasemediated hydrolysis of cellulose for bio-ethanol production. Ind. Eng. Chem. Res. 49: 10818-10825. https://doi.org/10.1021/ie100466h
  9. Labbe N, Kline LM, Moens L, Kim K, Kim PC, Hayes DG. 2012. Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresour. Technol. 104: 701-707. https://doi.org/10.1016/j.biortech.2011.10.062
  10. Lee S-M, Chang W-J, Koo Y-M. 2005. Application of ionic liquids in biotechnology. Korean J. Biotechnol. Bioeng. 20: 183-191.
  11. Ninomiya K, Omote S, Ogino C, Kuroda K, Noguchi M, Endo T, et al. 2015. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings. Bioresour. Technol. 189: 203-209. https://doi.org/10.1016/j.biortech.2015.04.022
  12. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, et al. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8: 325-327. https://doi.org/10.1039/b601395c
  13. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, et al. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066
  14. Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M. 2016. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem. Eng. J. 109: 252-267. https://doi.org/10.1016/j.bej.2016.01.021
  15. Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN. 2009. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139: 47-54. https://doi.org/10.1016/j.jbiotec.2008.08.009
  16. Kuroda K, Miyamura K, Satria H, Takada K, Ninomiya K, Takahashi K. 2016. Hydrolysis of cellulose using an acidic and hydrophobic ionic liquid and subsequent separation of glucose aqueous solution from the ionic liquid and 5-(Hydroxymethyl) furfural. ACS Sustain Chem. Eng. 4: 3352-3356. https://doi.org/10.1021/acssuschemeng.6b00420
  17. Pham TPT, Cho C-W, Yun Y-S. 2010. Environmental fate and toxicity of ionic liquids: a review. Water Res. 44: 352-372. https://doi.org/10.1016/j.watres.2009.09.030
  18. Romero A, Santos A, Tojo J, Rodriguez A. 2008. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 151: 268-273. https://doi.org/10.1016/j.jhazmat.2007.10.079
  19. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. 2001. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3: 156-164. https://doi.org/10.1039/b103275p
  20. Nakashima K, Yamaguchi K, Taniguchi N, Arai S, Yamada R, Katahira S, et al. 2011. Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chem. 13: 2948-2953. https://doi.org/10.1039/c1gc15688h
  21. Sitepu IR, Shi S, Simmons BA, Singer SW, Boundy-Mills K, Simmons CW. 2014. Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Res. 14: 1286-1294. https://doi.org/10.1111/1567-1364.12224
  22. Yu C, Simmons BA, Singer SW, Thelen MP, VanderGheynst JS. 2016. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts. Appl. Microbiol. Biotechnol. 100: 10237-10249. https://doi.org/10.1007/s00253-016-7955-0
  23. Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, et al. 2016. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb. Cell Fact. 15: 17. https://doi.org/10.1186/s12934-016-0417-7

Cited by

  1. Ethanol Fermentation of the Enzymatic Hydrolysates from the Products Pretreated using [EMIM]Ac and Its Co-Solvents with DMF vol.36, pp.1, 2017, https://doi.org/10.7747/jfes.2020.36.1.62