References
- Subramaniyan S, Prema P. 2002. Biotechnology of microbial xylanases: Enzyology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
- Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
- Bajaj BK, Singh NP. 2010. Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl. Biochem. Biotechnol. 162: 1804-1818. https://doi.org/10.1007/s12010-010-8960-x
- Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophile xlanases. 2005. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Kieser H, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom.
- Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
- Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
- Thomson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
- Felsenstein J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seatle, USA.
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Kluge AG, Farris FS. 1969. Quantative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
- Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
- Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application note. pp. 228-241.
- Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.
- Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
- Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. 2004. Altermonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Altermonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163. https://doi.org/10.1099/ijs.0.02862-0
- Pridham, TG, Hesseltine CW, Benedict RG. 1958. A guide for the classification of Streptomycetes according to selected groups; placement of strains in morphological sections. Appl. Microbiol. 6: 52-79.
- Virupakshi S, Babu KG, Gaikwad SR, Naik GR. 2005. Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation. Proc. Biochem. 40: 431-435. https://doi.org/10.1016/j.procbio.2004.01.027
- Miyazono K, Tabei N, Morita S, Ohnishi Y, Horinouchi S, Tanokura M. 2012. Substrate recognition mechanism and substratedependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J. Bacteriol. 194: 607-616. https://doi.org/10.1128/JB.06173-11
- Angell S, Lewis CG, Buttner MJ, Bibb MJ. 1994. Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol. Gen. Genet. 244: 135-143.
-
Georis J, Giannotta F, Buyl ED, Granier B, Frere JM. 2000. Purification and properties of three endo-
${\beta}$ -1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enz. Microbial. Technol. 26: 178-186. https://doi.org/10.1016/S0141-0229(99)00141-6 - Ninawe S, Kapoor M, Kuhad RC. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258. https://doi.org/10.1016/j.biortech.2007.02.016
- Wang SL, Yen YH, Shih IL, Chang AC, Chang WT, Wu WC, et al. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enz. Microbial Technol. 33: 917-925. https://doi.org/10.1016/S0141-0229(03)00246-1
- Zhang J, Matti SA, Terhi P, Ming T, Maija T, Liisa V. 2011. Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol. Biofuels 4: 12-25. https://doi.org/10.1186/1754-6834-4-12