DOI QR코드

DOI QR Code

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo (Laboratory for Materials and Structures, Tokyo Institute of Technology) ;
  • Kim, Hongseop (Department of Architectural Engineering, Chungnam National University) ;
  • Kim, Gyuyong (Department of Architectural Engineering, Chungnam National University)
  • Received : 2016.08.18
  • Accepted : 2016.11.06
  • Published : 2017.03.30

Abstract

This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

Keywords

References

  1. Ahmed, S. F. U., Maalej, M., & Paramasivam, P. (2007). Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash. Construction and Building Materials, 21, 1088-1097. https://doi.org/10.1016/j.conbuildmat.2006.01.002
  2. ASTM C150/C150M. (2016). Standard specification for Portland cement. West Conshohocken, PA: ASTM International.
  3. ASTM C39/C39M. (2015). Standard test method for compressive strength of cylindrical concrete specimen. West Conshohocken, PA: ASTM International.
  4. ASTM C469/C469M. (2014). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression.West Conshohocken, PA:ASTMInternational.
  5. ASTM C618. (2015). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Conshohocken, PA: ASTM International.
  6. Atis, C. D., & Karahan, O. (2009). Properties of steel fiber reinforced fly ash concrete. Construction and Building Materials, 23, 392-399. https://doi.org/10.1016/j.conbuildmat.2007.11.002
  7. Coughlin, A. M., Musselman, E. S., Schokker, A. J., & Linzell, D. G. (2010). Behavior of portable fiber reinforced concrete vehicle barriers subject to blasts from contact charges. International Journal of Impact Engineering, 37, 521-529. https://doi.org/10.1016/j.ijimpeng.2009.11.004
  8. Ha, J. H., Yi, N. H., Choi, J. K., & Kim, J. H. J. (2011). Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading. Composite Structures, 93, 2070-2082. https://doi.org/10.1016/j.compstruct.2011.02.014
  9. Habel, K., & Gauvreau, P. (2008). Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cement & Concrete Composites, 30, 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001
  10. Hanhwa Corporation/Explosive. Explosives Products. Available online: http://www.hanwhacorp.co.kr/explosives/business/area2_1.jsp. Accessed on 14 Oct 2016. (In Korean).
  11. Islam, A. K. M. A., & Yazdani, N. (2008). Performance of AASHTO girder bridges under blast loadings. Engineering Structures, 30(7), 1922-1937. https://doi.org/10.1016/j.engstruct.2007.12.014
  12. Kim, H., Kim, G., Gucunski, N., Nam, J., & Jeon, J. (2015a). Assessment of flexural toughness and impact resistance of bundle-type polyamide fiber-reinforced concrete. Composites Part B Engineering, 78, 431-446. https://doi.org/10.1016/j.compositesb.2015.04.011
  13. Kim, H., Kim, G., Nam, J., Kim, J., Han, S., & Lee, S. (2015b). Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete. Composite Structures, 134, 831-844. https://doi.org/10.1016/j.compstruct.2015.08.128
  14. Lan, S., Lok, T. S., & Heng, L. (2005). Composite structural panels subjected to explosive loading. Construction and Building Materials, 19, 387-395. https://doi.org/10.1016/j.conbuildmat.2004.07.021
  15. Lawler, J. S., Wilhelm, T., Zampini, D., & Shah, S. P. (2003). Fracture process of hybrid fiber reinforced mortar. Materials and Structures, 36, 197-208. https://doi.org/10.1007/BF02479558
  16. Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. https://doi.org/10.1007/s40069-014-0068-1
  17. Leppanen, J. (2006). Concrete subjected to projectile and fragment impacts: Modelling of crack softening and strain rate dependency in tension. International Journal of Impact Engineering, 32, 1828-1841. https://doi.org/10.1016/j.ijimpeng.2005.06.005
  18. Li, V., & Stang, H. (1997). Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites. Advanced Cement Based Materials, 6(1), 1-20. https://doi.org/10.1016/S1065-7355(97)90001-8
  19. Li, J., Wu, C., Hao, H., Su, Y., & Liu, Z. (2016a). Blast resistance of concrete slab reinforced with high performance fibre material. Journal of Structural Integrity and Maintenance, 1(2), 51-59. https://doi.org/10.1080/24705314.2016.1179496
  20. Li, J., Wu, C., Hao, H., Wang, Z., & Su, Y. (2016b). Experimental investigation of ultra-high performance concrete slabs under contact explosions. International Journal of Impact Engineering, 93, 62-75. https://doi.org/10.1016/j.ijimpeng.2016.02.007
  21. Luccioni, B. M., Ambrosini, R. D., & Danesi, R. F. (2004). Analysis of building collapse under blast loads. Engineering Structures, 26(1), 63-71. https://doi.org/10.1016/j.engstruct.2003.08.011
  22. Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. (2013). Self-consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International Journal of Concrete Structures and Materials, 7(2), 155-163. https://doi.org/10.1007/s40069-013-0044-1
  23. McVay, M. K. (1988). Spall damage of concrete structures. U.S. Army Corps of Engineers Waterways Experimental Station, Technical report SL88-22.
  24. Mechtcherine, V., Millon, O., Butler, M., & Thoma, K. (2011). Mechanical behaviour of strain hardening cement-based composites under impact loading. Cement & Concrete Composites, 33, 1-11. https://doi.org/10.1016/j.cemconcomp.2010.09.018
  25. Mindess, S., Banthia, N., & Yan, C. (1987). The fracture toughness of concrete under impact loading. Cement and Concrete Research, 17(2), 231-241. https://doi.org/10.1016/0008-8846(87)90106-2
  26. Morishita, M., Tanaka, H., Ando, T., & Hagiya, H. (2004). Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations. Concrete Research and Technology, 15(2), 89-98. (in Japanese). https://doi.org/10.3151/crt1990.15.2_89
  27. Morishita, M., Tanaka, H., Itoh, T., & Yamaguchi, H. (2000). Damage of reinforced concrete slabs subjected to contact detonations. Journal of Structural Engineering, 46A, 1787-1797. (in Japanese).
  28. Mosalam, K. M., & Mosallam, A. S. (2001). Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites. Composites Part B Engineering, 32, 623-636. https://doi.org/10.1016/S1359-8368(01)00044-0
  29. Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 1(3), 241-252. https://doi.org/10.3151/jact.1.241
  30. Nam, J. W., Kim, H. J., Kim, S. B., Yi, N. H., & Kim, J. H. J. (2010). Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure. Composite Structures, 92, 1212-1222. https://doi.org/10.1016/j.compstruct.2009.10.031
  31. Nam, J. S., Kim, G. Y., Miyauchi, H., Jeon, Y. S., & Hwang, H. K. (2011). Evaluation on the blast resistance of fiber reinforced concrete. Advanced Materials Research, 311-313, 1588-1593. https://doi.org/10.4028/www.scientific.net/AMR.311-313.1588
  32. Nam, J., Shinohara, Y., Atou, T., Kim, H., & Kim, G. (2016). Comparative assessment of failure characteristics on fiberreinforced cementitious composite panels under high-velocity impact. Composites Part B Engineering, 99, 84-97. https://doi.org/10.1016/j.compositesb.2016.06.008
  33. Ohkubo, K., Beppu, M., Ohno, T., & Satoh, K. (2008). Experimental study on the effectiveness of fiber sheet reinforcement on the explosive-resistant performance of concrete plates. International Journal of Impact Engineering, 35, 1702-1708. https://doi.org/10.1016/j.ijimpeng.2008.07.022
  34. Ohtsu, M., Uddin, F. A. K. M., Tong, W., & Murakami, K. (2007). Dynamics of spall failure in fiber reinforced concrete due to blasting. Construction and Building Materials, 21, 511-518. https://doi.org/10.1016/j.conbuildmat.2006.04.007
  35. Osteraas, J. D. (2006). Murrah building bombing revisited: a qualitative assessment of blast damage and collapse patterns. Journal of Performance of Constructed Facilities, 20(4), 330-335. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(330)
  36. Razaqpur, A. G., Tolba, A., & Contestabile, E. (2007). Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates. Composites Part B Engineering, 38, 535-546.
  37. RILEM 50-FMC Draft Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 285-290. https://doi.org/10.1007/BF02472917
  38. Shu, X., Graham, R. K., Huang, B., & Burdette, E. G. (2015). Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar. Materials and Design, 65, 1222-1228. https://doi.org/10.1016/j.matdes.2014.10.015
  39. Silva, P. F., & Lu, B. (2007). Improving the blast resistance capacity of RC slabs with innovative composite materials. Composites Part B Engineering, 38, 523-534. https://doi.org/10.1016/j.compositesb.2006.06.015
  40. Silva, P. F., & Lu, B. (2009). Blast resistance capacity of reinforced concrete slabs. Journal of Structural Engineering, 135, 708-716. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000011
  41. Soe, K. T., Zhang, Y. X., & Zhang, L. C. (2013). Impact resistance of hybrid-fiber engineered cementitious composite panels. Composite Structures, 104, 320-330. https://doi.org/10.1016/j.compstruct.2013.01.029
  42. Tanaka, H., & Tuji, M. (2003). Effects of reinforcing on damage of reinforced concrete slabs subjected to explosive loading. Concrete Research and Technology, 14(1), 1-11. (in Japanese). https://doi.org/10.3151/crt1990.14.1_1
  43. van Doormaal, J. C. A. M., Weerheijm, J., & Sluys, L. J. (1994). Experimental and numerical determination of the dynamic fracture energy of concrete. Journal de Physique IV, 4(C8), 501-506.
  44. Wang, W., Zhang, D., Lu, F., Wang, S. C., & Tang, F. (2013). Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under closein explosion. Engineering Failure Analysis, 27, 41-51. https://doi.org/10.1016/j.engfailanal.2012.07.010
  45. Wu, C., Nurwidayati, R., & Oehlers, D. J. (2009a). Fragmentation from spallation of RC slabs due to airblast loads. International Journal of Impact Engineering, 36, 1371-1376. https://doi.org/10.1016/j.ijimpeng.2009.03.014
  46. Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., & Whittaker, A. S. (2009b). Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs. Engineering Structures, 31, 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020
  47. Xie, W., Jiang, M., Chen, H., Zhou, J., Xu, Y., Wang, P., et al. (2014). Experimental behaviors of CFRP cloth strengthened buried arch structure subjected to subsurface localized explosion. Composite Structures, 116, 562-570. https://doi.org/10.1016/j.compstruct.2014.05.045
  48. Yamaguchi, M., Murakami, K., Takeda, K., & Mitsui, Y. (2011). Blast resistance of polyethylene fiber reinforced concrete to contact detonation. Journal of Advanced Concrete Technology, 9(1), 63-71. https://doi.org/10.3151/jact.9.63
  49. Yang, E. H., Yang, Y., & Li, V. C. (2007). Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Materials Journal, 104(6), 620-628.
  50. Yoo, D. Y., Banthia, N., Kim, S. W., & Yoon, Y. S. (2015). Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to lowvelocity impact loading.Composite Structures, 126, 233-245. https://doi.org/10.1016/j.compstruct.2015.02.058
  51. Yoo, D. Y., & Yoon, Y. S. (2016). A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 10(2), 125-142. https://doi.org/10.1007/s40069-016-0143-x
  52. Zhang, X. X., Ruiz, G., Yu, R. C., & Tarifa, M. (2009). Fracture behaviour of high-strength concrete at a wide range of loading rates. International Journal of Impact Engineering, 36, 1204-1209. https://doi.org/10.1016/j.ijimpeng.2009.04.007

Cited by

  1. 후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동 vol.21, pp.6, 2017, https://doi.org/10.11112/jksmi.2017.21.6.098
  2. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact vol.11, pp.3, 2018, https://doi.org/10.3390/ma11030409
  3. Influence of critical parameters on UHPFRC structural elements subjected to blast loading vol.2, pp.3, 2017, https://doi.org/10.1007/s42452-020-2259-5
  4. 후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성 vol.25, pp.3, 2017, https://doi.org/10.11112/jksmi.2021.25.3.31
  5. Effect of Fiber Blending Ratio on the Tensile Properties of Steel Fiber Hybrid Reinforced Cementitious Composites under Different Strain Rates vol.14, pp.16, 2021, https://doi.org/10.3390/ma14164504
  6. Experimental and numerical investigations on ultra-high toughness cementitious composite slabs subjected to close-in blast loadings vol.126, pp.None, 2017, https://doi.org/10.1016/j.cemconcomp.2021.104339