• Title/Summary/Keyword: fiber-reinforced cementitious composites

Search Result 154, Processing Time 0.037 seconds

An experimental study on the tensile performance evaluation of steel fiber reinforced cementitious composites according to fiber pull-out behabior (강섬유보강 시멘트 복합체의 섬유인발거동에 따른 인장성능 평가에 관한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Sang-Kyu;Shu, Dong-Kyun;Eu, Ha-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.155-156
    • /
    • 2020
  • The purpose of this study is to evaluate tensile performance of cementitious composites reinforced with steel fiber. The tensile performance of steel fiber reinforced cementitious composites is related to the tensile performance of reinforced fiber, and depends on the fracture or pull-out of fiber. Therefore, the tensile performance was compared and analyzed by conducting a direct tensile test on the tensile specimens of cementitious composites reinforced with hook-type steel fiber and amorphous steel fiber.

  • PDF

A Study on the Improvement for Construction Performance of Fiber Reinforced Cementitious Composites (섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • Koh, Kyung-Taeg;Park, Jung-Jun;Ryu, Gum-Sung;Kang, Su-Tae;Ahn, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.393-396
    • /
    • 2006
  • This study present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the construction performance of fiber reinforced cementitious composites. As for the test results, it was found that the workability of fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of fiber improved the workability of fiber reinforced cementitious composites. And the fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

  • PDF

A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites (고강도 강섬유 보강 시멘트 복합체의 워커빌리티 향상에 관한 연구)

  • Koh, Kyung-Taeg;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.141-148
    • /
    • 2004
  • This paper present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the workability of high strength steel fiber reinforced cementitious composites. As for the test results, it was found that the workability of high strength steel fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of steel fiber improved the workability of fiber reinforced cementitious composites. And the steel fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

Tensile Properties of Polyamide Fiber and Hooked Steel Fiber Reinforced Cementitious Composites by Strain Rate (변형속도에 따른 폴라아미드 섬유 및 후크형 강섬유 보강 시멘트 복합체의 인장특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.73-74
    • /
    • 2018
  • In this study, it evaluate the tensile properties of polyamide fiber reinforced cementitious composite and hooked steel fiber reinforced cementitious Composites by strain rate. Polyamide fiber reinforced cement composites (PAFRCC) and Hooked Steel Fiber Reinforced Cement Composite(HSFRCC) were fabricated. Each specimen was reinforced with 1.0 and 2.0vol% fiber. The length of the reinforced fiber was 30 mm for both fibers, and the tensile test specimen was made in dumbbell shape. As a result, the tensile strength of fiber in polyamide fiber and the mechanical bonding between fiber and matrix in hooked steel fiber are considered to be the main factors affecting tensile behavior of fiber reinforced cement composite.

  • PDF

Analysis of Failure Reduction Properties Cementitious Composites with Reinforced Fiber by Impact of High Velocity Projectile (비상체의 고속 충격을 받는 시멘트복합체의 혼입 단섬유에 따른 파괴저감특성 분석)

  • Jeon, In-Woo;Kim, Gyu-Yong;Cheo, Gyeong-Cheol;Kim, Hong-Seop;Kim, Jung-Hyun;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.186-187
    • /
    • 2014
  • Flexural stress and fracture energy of fiber reinforced cementitious composites is increased by bridge effect of reinforced fiber, scabbing failure is restrained. Shape, properties of fiber were SF(steel fiber), PA(polyamide), NY(nylon) have effects on flexural stress and fracture energy, impact resistance improve of fiber reinforced cementitious composites. In this study, local failure properties by impact of high velocity projectile was analyzed by mixing 3 types of fiber which have different shape and properties respectively.

  • PDF

A Study on the Improvement of Construction Performance of Steel Fiber Reinforced Cementitious Composites (강섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • 고경택;박정준;김방욱;이종석;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.749-754
    • /
    • 2002
  • In this study, it is investigate to influence on tile dispersion of fiber and the flowability of matrix of type and amount of superplasticizer, velocity agent, mineral admixture and steel fiber to improve for construction performance of steel fiber reinforced cementitious composites. As for the test results, it was found that the dispersion of fiber and the flowability of matrix in steel fiber reinforced cementitious composites can improve by using of properly amount and combination of superplasticizer, velocity agent, mineral admixture. Furthermore, It show that the aspect ratio of steel fiber affect the construction performance of fiber reinforced cementitious composites, and the improvement for construction performance is the more effective the smaller aspect ration of steel fiber.

  • PDF

Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress (열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가)

  • Han, Seung-Hyeon;Kim, Gyu-Yong;Lee, Yae-Chan;Eu, Ha-Min;Park, Jun-Young;Nam, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF

Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites

  • Shin, Kyung-Joon;Lee, Kwang-Myong;Chang, Sung-Pil
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.147-164
    • /
    • 2008
  • Recently, many researches have been done to examine the behavior of fiber reinforced concrete (FRC) subjected to the static loading. However, a few studies have been devoted to cyclic behaviors of FRC. A main objective of this paper is to investigate the cyclic behavior of FRC through theoretical method. A new cyclic bridging model was proposed for the analysis of fiber reinforced cementitious composites under cyclic loading. In the model, non-uniform degradation of interfacial bonding under cyclic tension was considered. Fatigue test results for FRC were numerically simulated using proposed models and the proposed model is achieving better agreement than the previous model. Consequently, the model can establish a basis for analyzing cyclic behavior of fiber reinforced composites.

W/C Ratio Effects on Mechanical Properties of High Performance hybrid SC and PE Fibers Reinforced Cement Composites (물-시멘트비에 따른 하이브리드 섬유보강 고인성 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Cheon, Esther;Lee, Sang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.118-121
    • /
    • 2006
  • The research reported here is concerned with the effects of the fiber combination condition and water/cement ratio on the mechanical properties of high performance fiber-reinforced cementitious composites(HPFRCC). An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of HPFRCC were selected using the cylindrical specimens. The results show that W/C ratio is a significant effect factor on the compressive and tensile performance of HPFRCC. The envelope curve concept applies to hybrid fiber-reinforced cementitious composites in tension just as it does to compressive stress-strain curve of fiber-reinforced cement composites. For practical purposes, the tensile envelope curve may be taken to be the same as the monotonic tensile stress-strain curve.

  • PDF

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.