References
- Anagnostopoulos, S. A., Kyrkos, M. T., Papalymperi, A., & Plevri, E. (2015a). Should accidental eccentricity be eliminated from Eurocode 8? Earthquakes and Structures, 8(2), 463-484. https://doi.org/10.12989/eas.2015.8.2.463
- Anagnostopoulos, S. A., Kyrkos, M. T., & Stathopoulos, K. G. (2015b). Earthquake induced torsion in buildings: Critical review and state of the art. Earthquakes and Structures, 8(2), 305-377. https://doi.org/10.12989/eas.2015.8.2.305
- Aschheim, M. (2002). Seismic design based on the yield displacement. Earthquake spectra, 18(4), 581-600. https://doi.org/10.1193/1.1516754
- Aziminejad, A., & Moghadam, A. S. (2009). Performance of asymmetric multistory buildings with different strength distributions. Journal of Applied Sciences, 9(6), 1082-1089. https://doi.org/10.3923/jas.2009.1082.1089
- Aziminejad, A., Moghadam, A. S., & Tso, W. K. (2008). A new methodology for designing multi-story asymmetric buildings. In The 14th world conference on earthquake engineering. Oct 14-17, Beijing, China.
- Bosco, M., Ferrara, G. A. F., Ghersi, A., Marino, E. M., & Rossi, P. P. (2015). Seismic assessment of existing R.C. framed structures with in-plan irregularity by nonlinear static methods. Earthquakes and Structures, 8(2), 401-422. https://doi.org/10.12989/eas.2015.8.2.401
- Chandler, A. M., Duan, X. N., & Rutenberg, A. (1996). Seismic torsional response: Assumptions, controversies and research progress. European Earthquake Engineering., 1, 37-51.
- Chopra, A. K. (2008). Dynamics of Structures (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
- Chopra, A. K., & Goel, R. K. (1999). Capacity-demand-diagram methods based on inelastic design spectrum. Earthquake Spectra, 15(4), 637-657. https://doi.org/10.1193/1.1586065
- Chopra, A. K., & Goel, R. K. (2000). Evaluation of NSP to estimate seismic deformation: SDF systems. Journal of Structural Engineering ASCE, 126(4), 482-490. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(482)
- Clough, R. W., & Penzien, J. (1993). Dynamics of structures (2nd ed.). New York, NY: McGraw-Hill.
- De Stefano, M., & Pintucchi, B. (2008). A review of research on seismic behaviour of irregular building structures since 2002. Bulletin of Earthquake Engineering, 6, 285-308. https://doi.org/10.1007/s10518-007-9052-3
- De Stefano, M., Tanganelli, M., & Viti, S. (2015). Seismic performance sensitivity to concrete strength variability: A case-study. Earthquakes and Structures, 9(2), 321-337. https://doi.org/10.12989/eas.2015.9.2.321
- EAK. (2000). Greek aseismic code. Greece: Greek Ministry of Environment, City Planning and Public Works. (in Greek).
- Eurocode 8 (EC8). (2004). Design provisions for earthquake resistance of structures. European Standard EN/1998: 2004
- Fajfar, P. (2000). A nonlinear analysis method for performance based seismic design. Earthquake Spectra, 16(3), 573-592. https://doi.org/10.1193/1.1586128
- Fajfar, P., Marusic, D., & Perus, I. (2005). Torsional effects in the pushover-based seismic analysis of buildings. Journal of Earthquake Engineering, 9(6), 831-854. https://doi.org/10.1080/13632460509350568
- Garcia, R., Sullivan, T. J., & Corte, G. D. (2010). Development of a displacement-based design method for steel-RC wall buildings. Journal of Earthquake Engineering, 14(2), 252-277. https://doi.org/10.1080/13632460902995138
- Georgoussis, G. K. (2008). Optimum design of multistory uniform structures with simple eccentricity. The Structural Design of Tall and Special Buildings, 17(3), 719-738. https://doi.org/10.1002/tal.376
- Georgoussis, G. K. (2009). An alternative approach for assessing eccentricities in asymmetric multistory structures, 1: Elastic Systems. The Structural Design of Tall and Special Buildings, 18(2), 181-202. https://doi.org/10.1002/tal.401
- Georgoussis, G. K. (2010). Modal rigidity center: Its use for assessing elastic torsion asymmetric buildings. Earthquake and Structures, 1(2), 163-175. https://doi.org/10.12989/eas.2010.1.2.163
- Georgoussis, G. K. (2012). Seismic analysis of non-proportionate eccentric buildings. Advanced Material Research, 450-451, 1482-1488. https://doi.org/10.4028/www.scientific.net/AMR.450-451.1482
- Georgoussis, G. K. (2014). Modified seismic analysis of multistory asymmetric elastic buildings and suggestions for minimizing the rotational response. Earthquake and Structures, 7(1), 039-52. https://doi.org/10.12989/eas.2014.7.1.039
- Georgoussis, G. K. (2015). Minimizing the torsional response of inelastic multistory buildings with simple eccentricity. Canadian Journal of Civil Engineering, 42(11), 966-969. https://doi.org/10.1139/cjce-2015-0091
- Ghersi, A., & Rossi, pp. (2001). Influence of bi-directional ground motions on the inelastic response of one-story inplan irregular systems. Engineering Structures, 23, 579-591. https://doi.org/10.1016/S0141-0296(00)00088-2
- Heidebrecht, A. C. (1975). Dynamic analysis of asymmetric wall- frame buildings. ASCE, National structural engineering convention.
- Heidebrecht, A. C., & Smith, B. S. (1973). Approximate analysis of tall wall-frame structures. Journal of the Structural Division ASCE, 2, 169-183.
- Heo, Y. A., & Kunnath, S. K. (2013). Damage-Based seismic performance evaluation of reinforced concrete frames. International Journal of Concrete Structures and Materials, 7(3), 175-182. https://doi.org/10.1007/s40069-013-0046-z
- Humar, J. L., & Rahgozar, M. A. (1996). Concept of over strength in seismic design. In 11th world conference on earthquake engineering. Acapulco, Mexico, June 23-28
- Krawinkler, H., & Seneviratna, G. D. P. K. (1998). Pushover analysis for seismic performance evaluation. Engineering structures, 20(4-6), 452-464. https://doi.org/10.1016/S0141-0296(97)00092-8
- Kyrkos, M. T., & Anagnostopoulos, S. A. (2011a). An assessment of code designed, torsionally stiff, asymmetric steel buildings under strong earthquake excitations. Earthquake and Structures, 2(2), 109-126. https://doi.org/10.12989/eas.2011.2.2.109
- Kyrkos, M. T., & Anagnostopoulos, S. A. (2011b). Improved earthquake resistant design of torsionally stiff asymmetric steel buildings. Earthquake and Structures, 2(2), 127-147. https://doi.org/10.12989/eas.2011.2.2.127
- Kyrkos, M. T., & Anagnostopoulos, S. A. (2013). Improved earthquake resistant design of eccentric buildings. Soil Dynamics and Earthquake Engineering., 47, 144-156. https://doi.org/10.1016/j.soildyn.2012.07.011
- Lucchini, A., Monti, D., & Kunnath, S. (2008). A simplified pushover method for evaluating the seismic demand in asymmetric-plan multi-story buildings. In The 14th world conference on earthquake engineering, Oct 14-17, Beijing.
- Lucchini, A., Monti, D., & Kunnath, S. (2009). Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation. Earthquake Engineering and Structural Dynamics, 38, 1053-1070. https://doi.org/10.1002/eqe.881
- Moghadam, A. S., & Tso, W. K. (2000). 3-D pushover analysis for damage assessment of buildings. Journal of Seismology and Earthquake Engineering, 2(3), 23-31.
- Newmark, N. M., & Rosenblueth, E. (1971). Fundamentals of earthquake engineering. Upper Saddle River, NJ: Prentice-Hall.
- Park, R., & Paulay, T. (1975). Reinforced concrete structures. Hoboken, NJ: Wiley.
- Paulay, T. (1998). A mechanism-based design strategy for the torsional seismic response of ductile buildings. European Earthquake Engineering, 2, 33-48.
- Paulay, T. (2001). Some design principles relevant to torsional phenomena in ductile buildings. Journal of Earthquake Engineering, 5(3), 271-308.
- Paulay, T. (2002). An estimation of displacement limits for ductile systems. Earthquake Engineering and Structural Dynamics, 31, 583-599. https://doi.org/10.1002/eqe.157
- Paulay, T. (2003). Seismic displacement capacity of ductile reinforced concrete building systems. Bulletin of the New Zealand Society for Earthquake Engineering., 36(1), 47-65.
- Paulay, T., & Priestley, M. J. N. (1992). Seismic design of reinforced and masonry buildings. Hoboken, NJ: Wiley.
- Priestley, M. J. N. (1996). Displacement-based seismic assessment of existing RC buildings. Bulletin of the New Zealand National Society for Earthquake Engineering, 29(4), 256-272.
- Priestley, M. J. N. (1998). Brief comments on elastic flexibility of RC frames and significance to seismic design. Bulletin of the New Zealand National Society for Earthquake Engineering, 31(4), 246-259.
- Priestley, M. J. N. (2000). Performance based seismic design. 12 WCEE, Auckland, New Zealand.
- Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Direct displacement based design of buildings. Pavia, Italy: IUSS Press.
- Priestley, M. J. N., & Kowalsky, M. J. (1998). Aspects of drift and ductility capacity of rectangular walls. Bulletin of the New Zealand National Society for Earthquake Engineering, 31(2), 73-85.
- Rutenberg, A. (1998). EAEE Task Group (TG)8: Behaviour of irregular and complex structures- State of the art report: Seismic nonlinear response of code-designed asymmetric structures. In 11th European conference on earthquake engineering. Rotterdam, Netherlands: Balkema
Cited by
- Optimum Locations of Outriggers in a Concrete Tall Building to Reduce Differential Axial Shortening vol.12, pp.1, 2017, https://doi.org/10.1186/s40069-018-0323-y
- A Heuristic Approach to Identify the Steel Grid Direction of R/C Slabs Using the Yield-Line Method for Analysis vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6017146
- Accounting for Torsional Response in Direct Displacement-based Design of Plan-asymmetric Reinforced Concrete Frame Buildings vol.23, pp.3, 2017, https://doi.org/10.1007/s12205-019-1739-x
- Incorporation of Torsional & Higher-Mode Responses in Displacement-Based Seismic Design of Asymmetric RC Frame Buildings vol.9, pp.6, 2017, https://doi.org/10.3390/app9061095
- Yield Displacements of Wall-Frame Concrete Structures and Seismic Design Based on Code Performance Objectives vol.25, pp.3, 2021, https://doi.org/10.1080/13632469.2018.1526141