DOI QR코드

DOI QR Code

고정층 반응기에서의 저등급 석탄 혼합촉매가스화 반응특성

Low-rank Coal Char Gasification Research with Mixed Catalysts at Fixed Reactor

  • 안승호 (충남대학교 에너지과학기술대학원) ;
  • 박지윤 (충남대학교 에너지과학기술대학원) ;
  • 진경태 (한국에너지기술연구원) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • An, Seung Ho (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Park, Ji Yun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jin, Gyoung Tae (Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 투고 : 2016.09.21
  • 심사 : 2016.10.07
  • 발행 : 2017.02.01

초록

본 연구에서는 인도네시아 저등급 석탄인 Kideco탄을 이용하여 질소 분위기 하에 등온상태에서 촤(char)를 생성한 후 반응가스(스팀,이산화탄소)를 주입하여 합성가스를 생성하는 가스화를 진행하였다. 온도가 반응속도에 미치는 영향을 알아보기 위해 $850^{\circ}C$ 이하의 운전온도(700, 750, 800, $850^{\circ}C$)에서 반응을 진행하였다. 촉매가 미치는 영향을 알아보기 위해 알카리계 촉매인 탄산칼륨과 금속촉매인 니켈을 이용하였으며 두가지 촉매의 혼합비율(1:9, 3:7, 5:5, 7:3, 9:1)을 다르게 하여 연구를 수행하였다. 탄산칼륨은 물리적 혼합을 통해 니켈은 이온교환법을 통해 준비하였다. 기-고체 반응 특성을 알아보기 위해 열중량분석기와 가스크로마토그래피를 통해 얻은 실험결과를 shrinking core model (SCM), volumetric reaction model (VRM), random pore model (RPM) and modified volumetric reaction model (MVRM)에 적용하여 비교하였다.

In this study, mixed catalytic char gasification of Indonesia low-rank coal Kideco was investigated under nitrogen atmosphere and isothermal conditions at a fixed reactor. The effects of the temperature were investigated at various temperature (700, 750, 800, $850^{\circ}C$). The effects of blend ratio of catalysts ($K_2CO_3$, Ni) were investigated with different blend ratios (1:9, 3:7, 5:5, 7:3 and 9:1). The sample was prepared by mixing with $K_2CO_3$ physically and by ionexchange method with Ni. The data from thermogravimetric analyzer and gas chromatography were applied to four gassolid reaction kinetic models including shrinking core model, volumetric reaction model, random pore model and modified volumetric reaction model.

키워드

참고문헌

  1. British Petroleum, "BP Statistical Review of World Energy 2013".
  2. International Energy Agency, "Energy Policies of IEA Countries - The Republic of Korea 2012 Review".
  3. Zhang, D. X., Liu, P., Lu, X. L., Wang, L. L., and Pan, T. Y., "Upgrading of Low Rank Coal by Hydrothermal Treatment: Coal Tar Yield during Pyrolysis," Fuel Process Technol., 141(1), 117-122(2015). https://doi.org/10.1016/j.fuproc.2015.06.037
  4. Zhuang, Q. L., Biondi, M., Yan, S. H., Bhagat, K., Vansickle, R., Chen, C., Tan, H., Zhu, Y., You, W. and Xia, W., "An Advanced Gasification Technology to Utilize Low Rank Coals for Power," Fuel., 152, 103-109(2015). https://doi.org/10.1016/j.fuel.2014.12.011
  5. Lee, S. H. and Kim, S. D., "Technology for the Preparation of Ash-free Coal from Low Rank Coal (LRC)," Korean Chem. Eng. Res., 46(3), 443-450(2008).
  6. Park, D. K., Kim, S. D., Lee, S. H. and Lee, J. G., "Co-pyrolysis Characteristics of Sawdust and Coal Blend in TGA and a Fixed Bed Reactor," Bioresource Technology, 101(15), 6151-6156(2010). https://doi.org/10.1016/j.biortech.2010.02.087
  7. Umar, D. F., Usui, H. and Komoda, Y., "Effect of Dispersing and Stabilizing Additives on Rheological Characteristics of the Upgraded Brown Coal Water Mixture," Fuel, 90(4), 611-615(2009).
  8. Tristantini, D., Supramono, D. and Suwignjo, R. K., "Catalytic Effect of $K_2CO_3$ in Steam Gasification of Lignite Char on Mole Ratio of $H_2/CO$ in Syngas," IJTech., 6(1), 22-30(2015). https://doi.org/10.14716/ijtech.v6i1.208
  9. Song, B. H., Kang, S. K. and Kim, S. D., "Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-Steam Gasification," Korean Chem. Eng. Res., 30(6), 749-759(1992).
  10. Song, B. H. and Kim, S. D., "Catalytic Activity of Alkali and Iron Salt Mixtures for Steam-Char Gasification," Fuel, 72(6), 797-803(1993). https://doi.org/10.1016/0016-2361(93)90083-E
  11. Lee, W. J. and Kim, S. D., "Catalytic Activity of Alkali and Transition Metal Salt Mixtures for Steam-Char Gasification," Fuel, 74(9), 1387-1393(1995). https://doi.org/10.1016/0016-2361(95)00081-F
  12. McKee, D. W., "Mechanism of the Alkali Metal Catalysed Gasification of Carbon," Fuel, 62, 170(1983). https://doi.org/10.1016/0016-2361(83)90192-8
  13. Williams, A., Kashania, M., and Jones, M., "Combustion of Pulverised Coal and Biomass," Progress in Energy and Combustion Science, 27(6), 587-610(2001). https://doi.org/10.1016/S0360-1285(01)00004-1
  14. Lee, S. H., Hyun, J. S., Rhim, Y. J., Park, Y. Y., and Kim, S. C., "Coal/Biomass Co-firing in Utility Boilers," Energy Eng., 4(5), 197-200(2003).
  15. Park, C. Y., Park, J. Y., Lee, S. H., Rhu, J. H., Han, M. H. and Rhee, Y. W., "Kinetic Studies of the Catalytic Low Rank Coal Gasification under $CO_2$ Atmosphere," Korean Chem. Eng. Res., 50(6), 1086-1092(2012). https://doi.org/10.9713/kcer.2012.50.6.1086
  16. Park, Ji. Y., Lee, D. K., Hwang, S. C., Kim, S. K., Lee, S. H., Yoon, S. K., Yoo, J. H. Lee, S. H., and Rhee, Y. W., "Comparative Modeling of Low Temperature Char-$CO_2$ Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration," Clean Technol., 19(3), 306-312(2013). https://doi.org/10.7464/ksct.2013.19.3.306
  17. Hwang, S. C., Kim, S. K., Park, J. Y., Lee, D. K., Lee, S. H. and Rhee, Y. W., "Kinetic study on Low-rank Coal Including $K_2CO_3,\;Na_2CO_3,\;CaCO_3$ and Dolomite Gasification under $CO_2$ Atmosphere," Clean Technol., 20(1), 64-71(2014). https://doi.org/10.7464/ksct.2014.20.1.064
  18. Park, S. T., Choi, Y. T., and Sohn, J. M., "The Study of $CO_2$ Gasification of Low Rank Coal Impregnated by $K_2CO_3,\;Mn(NO_3)_2,\;and\;Ce(NO_3)_3$," Appl. Chem. Eng., 22(3), 312-318(2011).
  19. Zhu, W., Song, W. and Lin, W., "Catalytic Gasification of Char from Co-Pyrolysis of Coal and Biomass," Fuel Process. Technol., 89(9), 890-896(2008). https://doi.org/10.1016/j.fuproc.2008.03.001
  20. Kong, Y. J., Lim, J. H., Rhim, Y. J., Chun, D. H., Lee, S. H., Yoo, J. H. and Rhee, Y. W., "Comparative Studies on $K_2CO_3$-based Catalytic Gasification of Samhwa Raw Coal and Its Ashfree Coal," Clean Technol., 20(3), 218-225(2014). https://doi.org/10.7464/ksct.2014.20.3.218
  21. Wen, C. Y., "Noncatalytic Heterogeneous Solid-fluid Reaction Models," Ind. & Eng. Chem., 60(9), 34-54(1968). https://doi.org/10.1021/ie50705a007
  22. Shida, M. and Wen, C. Y., "Comparison of Kinetic and Diffusional Models for Solid-gas Reactions," AIChE J., 14(2), 311-317 (1968). https://doi.org/10.1002/aic.690140218
  23. Asaoka, S., Sakata, Y. and Tong, C., "Kinetic Evaluation of the Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25(1), (1985).
  24. Bhatia, S. K. and Perlmutter, D. D., "A Random Pore Model for Fluid-solid Reaction: I Isothermal, Kinetic Control," AIChE J., 23(3), 379-386(1980).
  25. Nahas, N. C., "Exxon Catalytic Coal Gasification Process: Fundamentals to Flowsheets," Fuel, 62(2), 239-241(1983). https://doi.org/10.1016/0016-2361(83)90207-7
  26. Spiro, C. K., Mckee, D. W., Kosky, P. G., Lamby, E. H. and Maylotte, D. H., "Significant Parameters in The Catalyzed $CO_2$ Gasification of Coal Chars," Fuel, 62(3), 323-330(1983). https://doi.org/10.1016/0016-2361(83)90090-X
  27. Youssef, E. A., Chowdhury, M. B. I., Nakhla, G. and Chapentier, P. A., "Effect of Nickel Loading on Hydrogen Production and Chemical Oxygen Demand (COD) Destruction from Glucose Oxidation and Gasification in Supercritical Water," Hydrogen Energy, 35(10), 5034-5042(2010). https://doi.org/10.1016/j.ijhydene.2009.08.076
  28. Chan, F. L. and Tanksale, A., "Review of Recent Developments in Ni-based Catalysts for Biomass Gasification," Renewable and Sustainable Energy Reviews, 38, 428-438(2014). https://doi.org/10.1016/j.rser.2014.06.011
  29. Song, B. H., Jang, Y. W. and Byoun, Y. S., "Steam Gasification of a Bituminous Char Catalyzed by A Salt Mixture of Potassium Sulfate and Nikel Nitrate," Korean Chem. Eng. Res., 41(3), 349-356(2003).
  30. Li, S. and Cheng Y., "Catalytic Gasification of Gas-Coal Char in $CO_2$," Fuel, 74(3), 456-458(1995). https://doi.org/10.1016/0016-2361(95)93482-S
  31. Seo, H. K., Park, S., Lee, J., Kim, M., Chung, S. W., Chung, J. H. and Kim, K., "Effects of Operating Factors in the Coal Gasification Reaction," Korean J. Chem. Eng., 28(9), 1851-1858(2011). https://doi.org/10.1007/s11814-011-0039-z
  32. Sawettaporn, S., Bunyakiat, K. and Kitiyanan, B., "$CO_2$ Gasification of Thai Coal Chars: Kinetics and Reactivity Studies," Korean J. Chem. Eng., 26(4), 1009-1015(2009). https://doi.org/10.1007/s11814-009-0168-9
  33. Irfan, M. F., Usman, M. R., and Kusakabe, K., "Coal Gasification in $XO_2$ Atmosphere and Its Kinetics Since 1948: A Brief Review," Energy, 36(1), 12-40(2011). https://doi.org/10.1016/j.energy.2010.10.034
  34. Zhang, L., Huang, J., Fang, Y. and Wang, Y., "Gasification Reactivity and Kinetics of Typical Chinese Anthracite Chars with Steam and $CO_2$," Energy & Fuels, 20(3), 1201-1210(2006). https://doi.org/10.1021/ef050343o
  35. Tangsathitkulchai, C., Junpirom, S. and Katesa, J., "Comparison of Kinetic Models for $CO_2$ Gasification of Coconut-Shell Chars: Carbonization Temperature Effects on Char Reactivity and Porous Properties of Produced Activated Carbons," Ind. Crops Prod., 17(1), 13-28(2012).
  36. Song, B. H. and Kim, S. D., "Catalytic Activity of Alkali and Iron Salt Mixtures for Steam-char Gasification," Fuel., 72(6), 797-803(1993). https://doi.org/10.1016/0016-2361(93)90083-E