DOI QR코드

DOI QR Code

Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer

  • 양기정 (대구경북과학기술원 태양에너지융합연구센터) ;
  • 심준형 (대구경북과학기술원 태양에너지융합연구센터) ;
  • 손대호 (대구경북과학기술원 태양에너지융합연구센터) ;
  • 이상주 (대구경북과학기술원 태양에너지융합연구센터) ;
  • 김영일 (대구경북과학기술원 태양에너지융합연구센터) ;
  • 윤도영 (광운대학교 화학공학과)
  • Yang, Kee-Jeong (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Sim, Jun-Hyoung (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Son, Dae-Ho (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Lee, Sang-Ju (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Kim, Young-Ill (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • 투고 : 2016.08.26
  • 심사 : 2016.11.23
  • 발행 : 2017.02.01

초록

본 실험에서는 $Cu_2ZnSnS_4$(CZTS) 태양전지의 흡수층 상부에 다양한 조성을 갖는 $Zn(O_x,S_{1-x})$ 버퍼층을 적용하여 특성 변화를 살펴보았다. $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$ 그리고 $Zn(O_{0.17},S_{0.83})$의 4가지 단일막의 경우, 전자-정공의 재결합 억제에 유리한 밴드갭 구조를 나타내는 $Zn(O_{0.76},S_{0.24})$ 버퍼층을 소자에 적용했다. $Zn(O_{0.76},S_{0.24})$ 버퍼층을 소자에 적용 시, 흡수층으로부터 S가 버퍼층으로 확산되어 소자 내에서의 버퍼층은 $Zn(O_{0.7},S_{0.3})$의 조성을 나타냈다. CdS 버퍼층의 $E_V$보다 낮은 에너지 준위를 갖는 $Zn(O_{0.7},S_{0.3})$ 버퍼층은 전자-정공 재결합을 효과적으로 억제하기 때문에 CZTS 태양전지의 $J_{SC}$$V_{OC}$ 특성을 향상시켰다. 이를 통해 CdS 버퍼층이 적용된 CZTS 태양전지의 효율인 2.75%가 $Zn(O_{0.7},S_{0.3})$ 버퍼층 적용을 통해 4.86%로 향상되었다.

This experiment investigated characteristic changes in a $Cu_2ZnSnS_4$(CZTS) solar cell by applying a $Zn(O_x,S_{1-x})$ butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$, and $Zn(O_{0.17},S_{0.83})$, the $Zn(O_{0.76},S_{0.24})$ buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the $Zn(O_{0.76},S_{0.24})$ buffer layer to the device, the buffer layer in the device showed the composition of $Zn(O_{0.7},S_{0.3})$ because S diffused into the buffer layer from the absorber layer. The $Zn(O_{0.7},S_{0.3})$ buffer layer, having a lower energy level ($E_V$) than a CdS buffer layer, improved the $J_{SC}$ and $V_{OC}$ characteristics of the CZTS solar cell because the $Zn(O_{0.7},S_{0.3})$ buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the $Zn(O_{0.7},S_{0.3})$ buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.

키워드

참고문헌

  1. Hallegatte, S., Bangalore, M., Bonzanigo, L., Fay, M., Kane, T., Narloch, U., Rozenberg, J., Treguer, D. and Vogt-Schilb, A., "Shock Waves: Managing the Impacts of Climate Change on Poverty,"World Bank Group, USA(2016).
  2. Wadia, C., Alivisatos, A. P. and Kammen, D. M., "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment," Environ. Sci. Technol., 43, 2072-2077(2009). https://doi.org/10.1021/es8019534
  3. Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T. and Bulovic, V., "Pathways for Solar Photovoltaics," Energy Environ. Sci., 8, 1200-1219(2015). https://doi.org/10.1039/C4EE04073B
  4. Ramasamy, K., Malik, M. A. and O'Brien, P., "Routes to Copper Zinc Tin Sulfide $Cu_2ZnSnS_4$ a Potential Material for Solar Cells," Chem. Commun., 48, 5703-5714(2012). https://doi.org/10.1039/c2cc30792h
  5. Winkler, M. T., Wang, W., Gunawan, O., Hovel, H. J., Todorov, T. K. and Mitzi, D. B., "Optical Designs that Improve the Efficiency of $Cu_2ZnSn(S,Se)_4$ Solar Cells," Energy Environ. Sci., 7, 1029-1036(2014). https://doi.org/10.1039/C3EE42541J
  6. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., "Solar Cell Efficiency Tables (version 46)," Prog. Photovolt: Res. Appl., 23, 805-812(2015). https://doi.org/10.1002/pip.2637
  7. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W. and Powalla, M., "Effects of Heavy Alkali Elements in $Cu(In,Ga)Se_2$ Solar Cells with Efficiencies up to 22.6%," Phys. Status Solidi RRL, 10(8), 583-586(2016). https://doi.org/10.1002/pssr.201600199
  8. Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y. and Mitzi, D. B., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Adv. Energ. Mater., 4, 1301465(2014). https://doi.org/10.1002/aenm.201301465
  9. Son, D., Kim, D., Park, S., Yang, K., Nam, D., Cheong, H. and Kang, J., "Growth and Device Characteristics of CZTSSe Thin-Film Solar Cells with 8.03% Efficiency," Chem. Mater., 27, 5180-5188 (2015). https://doi.org/10.1021/acs.chemmater.5b01181
  10. Yang, K., Sim, J., Son, D., Kim, D., Kim, G. Y., Jo, W., Song, S., Kim, J., Nam, D., Cheong, H. and Kang, J., "Effects of the Compositional Ratio Distribution with Sulfurization Temperatures in the Absorber Layer on the Defect and Surface Electrical Characteristics of $Cu_2ZnSnS_4$ Solar Cells," Prog. Photovolt: Res. Appl., 23, 1771-1784(2015). https://doi.org/10.1002/pip.2619
  11. Fairbrother, A., Fontane, X., Izquierdo-Roca, V., Placidi, M., Sylla, D., Espindola-Rodriguez, M., Lopez-Marino, S., Pulgarin, F. A., Vigil-Galan, O., Perez-Rodriguez, A. and Saucedo, E., "Secondary Phase Formation in Zn-rich $Cu_2ZnSnSe_4$-based Solar Cells Annealed in Low Pressure and Temperature Conditions," Prog. Photovolt: Res. Appl., 22, 479-487(2014). https://doi.org/10.1002/pip.2473
  12. Vigil-Galan, O., Espindola-Rodriguez, M., Courel, M., Fontane, X., Sylla, D., Izquierdo-Roca, V., Fairbrother, A., Saucedo, E. and Perez-Rodriguez, A., "Secondary Phases Dependence on Composition Ratio in Sprayed $Cu_2ZnSnS_4$ Thin Films and Its Impact on the High Power Conversion Efficiency," Sol. Energ. Mater. Sol. Cells, 117, 246-250(2013). https://doi.org/10.1016/j.solmat.2013.06.008
  13. Colombara, D., Robert, E. V. C., Crossay, A., Taylor, A., Guennou, M., Arasimowicz, M., Malaquias, J. C. B., Djemour, R. and Dale, P. J., "Quantification of Surface ZnSe in $Cu_2ZnSnS_4$-Based Solar Cells by Analysis of the Spectral Response," Sol. Energ. Mater. Sol. Cells, 123, 220-227(2014). https://doi.org/10.1016/j.solmat.2014.01.015
  14. Watjen, J. T., Engman, J., Edoff, M. and Platzer-Bjorkman, C., "Direct Evidence of Current Blocking by ZnSe in $Cu_2ZnSnSe_4$ Solar Cells," Appl. Phys. Lett., 100, 173510(2012). https://doi.org/10.1063/1.4706256
  15. Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S. and Qiao, Q., "Strategic Review of Secondary Phases, Defects and Defectcomplexes in Kesterite CZTS-Se Solar Cells," Energy Environ. Sci., 8, 3134-3159(2015). https://doi.org/10.1039/C5EE02153G
  16. Huang, T. J., Yin, X., Qi, G. and Gong, H., "CZTS-based Materials and Interfaces and Their Effects on the Performance of Thin Film Solar Cells," Phys. Stat. Sol., 8(9), 735-762(2014). https://doi.org/10.1002/pssr.201409219
  17. Chen, S., Walsh, A., Gong, X. G. and Wei, S. H., "Classifi Cation of Lattice Defects in the Kesterite $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ Earth-Abundant Solar Cell Absorbers," Adv. Mater., 25, 1522-1539(2013). https://doi.org/10.1002/adma.201203146
  18. Chen, S., Yang, J., Gong, X. G., Walsh, A. and Wei, S., "Intrinsic Point Defects and Complexes in the Quaternary Kesterite Semiconductor $Cu_2ZnSnS_4$," Phys. Rev. B, 81, 245204(2010). https://doi.org/10.1103/PhysRevB.81.245204
  19. Yin, W. J., Wu, Y., Wei, S. H., Noufi, R., Al-Jassim, M. M. and Yan, Y., "Engineering Grain Boundaries in $Cu_2ZnSnSe_4$ for Better Cell Performance: A First-Principle Study," Adv. Energ. Mater., 4, 1300712(2014). https://doi.org/10.1002/aenm.201300712
  20. Yang, K., Sim, J., Jeon, B., Son, D., Kim, D., Sung, S., Hwang, D., Song, S., Khadka, D. B., Kim, J. and Kang, J., "Effects of Na and $MoS_2$ on $Cu_2ZnSnS_4$ Thin-film Solar Cell," Prog. Photovolt:Res. Appl., 23, 862-873(2015). https://doi.org/10.1002/pip.2500
  21. Yang, K., Sim, J., Son, D., Kim, D. and Kang, J., "Two Different Effects of Na on $Cu_2ZnSnS_4$ Thin-film Solar Cells," Curr. Appl. Phys., 15, 1512-1515(2015). https://doi.org/10.1016/j.cap.2015.08.021
  22. Woo, K., Kim, Y., Yang, W., Kim, K., Kim, I., Oh, Y., Kim, J. Y. and Moon, J., "Band-gap-graded$ Cu_2ZnSn(S_{1-x},Se_x)_4$ Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route," Sci. Rep., 3, 3069(2013). https://doi.org/10.1038/srep03069
  23. Wei, H., Ye, Z., Li, M., Su, Y., Yang, Z. and Zhang, Y., "Tunable Band Gap $Cu_2ZnSnS_{4x}Se_{4(1-x)}$ Nanocrystals: Experimental and First-principles Calculations," CrystEngComm, 13, 2222-2226(2011). https://doi.org/10.1039/c0ce00779j
  24. Malerba, C., Biccari, F., Ricardo, C. L. A., Valentini, M., Chierchia, R., Muller, M., Santoni, A., Esposito, E., Mangiapane, P., Scardi, P. and Mittiga, A., "CZTS Stoichiometry Effects on the Band Gap Energy," J. Alloys Compd, 582, 528-534(2014). https://doi.org/10.1016/j.jallcom.2013.07.199
  25. Yang, K., Son, D., Sung, S., Sim, J., Kim, Y., Park, S., Jeon, D., Kim, J., Hwang, D., Jeon, C., Nam, D., Cheong, H., Kang, J. and Kim, D., "A Band-gap-graded CZTSSe Solar Cell with 12.3% Efficiency," J. Mater. Chem. A, 4, 10151-10158(2016). https://doi.org/10.1039/C6TA01558A
  26. Bar, M., Schubert, B.A., Marsen, B., Wilks, R. G., Pookpanratana, S., Blum, M., Krause, S., Unold, T., Yang, W., Weinhardt, L., Heske, C. and Schock, H. W., "Cliff-like Conduction Band Offset and KCN-induced Recombination Barrier Enhancement at the $CdS/Cu_2ZnSnS_4$ Thin-film Solar Cell Heterojunction," APL, 99, 222105(2011).
  27. Platzer-Bjorkman, C., Torndahl, T., Abou-Ras, D., Malmström, J., Kessler, J. and Stolt, L., "$(Zn(O_x,S_{1-x})$ Buffer Layers by Atomic Layer Deposition in $Cu(In,Ga)Se_2$ Based Thin Film Solar Cells: Band Alignment and Sulfur Gradient," J. Appl. Phys., 100, 044506(2006). https://doi.org/10.1063/1.2222067
  28. Larina, L., Shin, D., Kim, J. H. and Ahn, B. T., "Alignment of Energy Levels at the $ZnS/Cu(In,Ga)Se_2$ Interface," Energy Environ. Sci., 4, 3487-3493(2011). https://doi.org/10.1039/c1ee01292d
  29. Ericson, T., Scragg, J. J., Hultqvist, A., Watjen, J. T., Szaniawski, P., Torndahl, T. and Platzer-Bjorkman, C., "Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for $Cu_2ZnSnS_4$ Solar Cells," IEEE J. Photovolt., 4(1), 465-469(2014). https://doi.org/10.1109/JPHOTOV.2013.2283058
  30. Kobayashi, T., Kumazaw, T., Kao, Z. J. L. and Nakada, T., "$Cu(In,Ga)Se_2$ Thin Film Solar Cells with a Combined $ALD-(Zn(O_x,S_{1-x})$ Buffer and MOCVD-ZnO:B Window Layers," Sol. Energy Mat. Sol. Cells, 119, 129-133(2013). https://doi.org/10.1016/j.solmat.2013.05.052
  31. Barkhouse, D. A. R., Haight, R., Sakai, N., Hiroi, H., Sugimoto, H. and Mitzi, D. B., "Cd-free Buffer Layer Materials on $Cu_2ZnSn(S_xSe_{1-x})_4$: Band Alignments with ZnO, ZnS, and $In_2S_3$," APL, 100, 193904(2012).
  32. Klenk, R., Steigert, A., Rissom, T., Greiner, D., Kaufmann, C. A., Unold, T. and Lux-Steiner, M. C., "Junction Formation by $(Zn(O_x,S_{1-x})$ Sputtering Yields CIGSe Based Cells with Efficiencies Exceeding 18%," Prog. Photovolt: Res. Appl., 22, 161-165(2014). https://doi.org/10.1002/pip.2445
  33. Hultqvist, A., Platzer-Bjorkman, C., Coronel, E. and Edoff, M., "Experimental Investigation of $Cu(In_{1-x},Ga_x)Se_2/Zn(O_{1-z},S_z)$ Solar Cell Performance," Sol. Energy Mat. Sol. Cells, 95, 497-503(2011). https://doi.org/10.1016/j.solmat.2010.09.009
  34. Shin, D. H., Kim, J. H., Shin, Y. M., Yoon, K. H., Al-Ammar, E. A. and Ahn, B. T., "Improvement of the Cell Performance in the $ZnS/Cu(In,Ga)Se_2$ Solar Cells by the Sputter Deposition of a Bilayer ZnO: Al Film," Prog. Photovolt: Res. Appl., 21, 217-225(2013). https://doi.org/10.1002/pip.2319
  35. Huang, S., Luo, W. and Zou, Z., "Band Positions and Photoelectrochemical Properties of $Cu_2ZnSnS_4$ Thin Films by the Ultrasonic Spray Pyrolysis Method," J. Phys. D: Appl. Phys., 46, 235108(2013). https://doi.org/10.1088/0022-3727/46/23/235108
  36. Schmid, D., Ruckh, M. and Schock, H. W., "A Comprehensive Characterization of the Interfaces in Mo/CIS/CdS/ZnO Solar Cell Structures," Sol. Energy Mat. Sol. Cells, 41/42, 281-294(1996). https://doi.org/10.1016/0927-0248(95)00107-7
  37. Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y., "$Cu(In,Ga)Se_2$ Solar Cells with Controlled Conduction Band Offset of $Window/Cu(In,Ga)Se_2$ Layers," J. Appl. Phys., 89(12), 8327-8330(2001). https://doi.org/10.1063/1.1366655
  38. Persson, C., "Strong Valence-band Offset Bowing of $ZnO_{1-x}S_x$ Enhances p-Type Nitrogen Doping of ZnO-like Alloys," Phys. Rev. Lett. PRL, 97, 146403(2006). https://doi.org/10.1103/PhysRevLett.97.146403
  39. Chen, S., Walsh, A., Yang, J. H., Gong, X. G., Sun, L., Yang, P. X., Chu, J. H. and Wei, S. H., "Compositional Dependence of Structural and Electronic Properties of $Cu_2ZnSn(S,Se)_4$ Alloys for Thin Film Solar Cells," Phys. Rev. B, 83, 125201(2011). https://doi.org/10.1103/PhysRevB.83.125201
  40. Zhang, S. B., Wei, S. H. and Zunger, A., "A Phenomenological Model for Systematization and Prediction of Doping Limits in II-VI and I-III-$VI_2$Compounds," J. Appl. Phys., 83(6), 3192-3196(1998). https://doi.org/10.1063/1.367120