DOI QR코드

DOI QR Code

Chlorella saccharophila 배양 최적화 및 유용물질의 생산

Optimization of Chlorella saccharophila Cultivation and Useful Materials Production

  • Kim, A-Ram (Department of Biotechnology, Pukyong National University) ;
  • Park, Mi-Ra (Department of Biotechnology, Pukyong National University) ;
  • Kim, Hyo Seon (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • 투고 : 2016.08.12
  • 심사 : 2016.10.25
  • 발행 : 2017.02.01

초록

본 연구에서는 Chlorella saccharophila의 배양을 통하여 바이오에너지 자원을 대량으로 확보하고자 배지 최적화 실험을 진행하였다. 최적화 인자로는 배양 형태, 초기 접종량, 탄소원 종류 및 농도, 질소원 종류 및 농도, 배양시간이다. 실험 결과, 배양 형태는 광원과 외부탄소원을 모두 공급하는 mixotrophic 배양이 적절하였다. 초기 접종량은 3% (v/v), 탄소원은 glucose 30 g/L, 질소원은 $NaNO_3$ 0.95 g/L를 첨가하는 것이 우수하였다. 최적 배지 조건으로 배양한 결과, oil의 함량은 12일에서 가장 높았으나, 회수되는 C. saccharophila의 biomass양과 chlorophyll의 양은 10일에서 가장 높았다. 위의 결과는 미세조류의 배지 최적화를 통하여 대량배양을 위한 기초자료로 사용될 수 있으리라 판단된다.

In this study, the optimization of several factors for Chlorella saccharophila cultivation was investigated. The studied factors were medium type, culture type, inoculum size, sugar/nitrogen source type and concentrations. As a result, the optimized conditions for C. saccharophila cultivation were found to be the best at 3% (v/v) inoculum, 30 g/L glucose and 0.95 g/L $NaNO_3$ under mixotrophic culture. Under the optimized condition, the content of oil was high at 12 day, whereas, the amount of biomass and chlorophyll were high at 10 day.

키워드

참고문헌

  1. Demibras, A., "Progress and Recent Trends in Biofuels," Prog. Energy Combust, Sci., 33, 1-18(2007). https://doi.org/10.1016/j.pecs.2006.06.001
  2. Kamm, B., Gruber, P. R. and Kamm, M., "Biorefineries : Industrial Processes and Products," WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2008).
  3. Werpy, T. and Petersen, G., "Top Value Added Chemicals from Biomass, volume I : Results of Screening for Potential Candidates from Sugars and Synthesis Gas," The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL)(2004).
  4. Jeong, G. T., "Production of Total Reducing Sugar and Levulinic acid from Brown Macro-algae Sargassum fulvellum," Microbiol. Biotechnol. Lett., 42, 177-183(2014). https://doi.org/10.4014/kjmb.1404.04005
  5. Hamasaki, A., Shioji, N., Ikuta, Y., Hukuda, Y., Makita, T., Hirayama, K., Matuzaki, H., Tukamoto, T. and sasaki, S., "Carbon Dioxide Fixation by Microalgae Photosynthesis using Actual Flue Gas from a Power Plant," Biochem Biotechnol., 45, 799-809(1994).
  6. Park, J. I., Woo, H. C. and Lee, J. H. "Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844(2008).
  7. Kang, S., Kim, S., Lee, J., "Optimization of Cross Flow Filtration System for Dunaliella tertiolecta and Tetraselmis sp. Microalgae Harvest," Korean J. Chem. Eng., 32(7), 1377-1380(2015). https://doi.org/10.1007/s11814-014-0343-5
  8. Choi, K., Lee, J., Jo, J., Shin, S., Kim, J. W., "Optimization of Hot-water Extraction Conditions of Polyphenolic Compounds from Lipid Extracted Microalgae," Korean Chem. Eng. Res., 54(3), 310-314(2016). https://doi.org/10.9713/kcer.2016.54.3.310
  9. Hashumoto, S. and Furukawa, K., "Nurtient Removal from Secondary Effluent by Filamentous Algae," J. Fermt. Bioeng., 67, 62-69(1989). https://doi.org/10.1016/0922-338X(89)90088-3
  10. Banat, J., Puskas, K., Esen, I. and Al-Dahar, R., "Wastewater Treatment and Algal Productivity in an Intergrated Ponding System," Biol. Wastes., 32, 265-275(1990). https://doi.org/10.1016/0269-7483(90)90058-Z
  11. Wilde, E. W. and Benemann, J. R., "Bioremoval of Heavy Metals by the Use of Microalgae," Biotechnol. adv., 11, 781-812(1993). https://doi.org/10.1016/0734-9750(93)90003-6
  12. Kandah, M., Abu Al-Rub F.A. and Al-Dabaydeh, N., "The Aqueous Adsorption of Copper and Cadmium Ions on Sheep Manure," Adsorption Science Technol., 21, 501-509(2003). https://doi.org/10.1260/026361703771953569
  13. Lee, J. Y., "Fatty Acids Production from Chlorella sp. KR-1 using Bubble-column Photobioreactors," KSBB J., 4, 183-183(2010).
  14. Ra, C. H., Kang, C. H., Jung, J. H., Jeong, G. T. and Kim, S. K., "Effects of Light-Emitting Diodes (LEDs) on the Accumulation of Lipid Content using a Two-phase Culture Process with Three Microalgae," Bioresour. Technol., 212, 254-261(2016). https://doi.org/10.1016/j.biortech.2016.04.059
  15. Cho, S. J., Lee, D. H., Luong, T. T., Park, S. R., Oh, Y. K. and Lee, T. H., "Effects of Carbon and Nitrogen Sources on Fatty Acid Contents and Composition in the Green Microalga, Chlorella sp. 227," J. Microbiol. Biotechnol., 21, 1073-1080(2011). https://doi.org/10.4014/jmb.1103.03038
  16. Lee, H. S., Jeon, S. G., Oh, Y. K., Kim, K. H., Chung, S. H., Na, J. G. and Yeo, S. D., "Recovery of Lipid from Chlorella sp. KR-1 via Pyrolysis and Characteristics Pyrolysis Oil," Korean Chem. Eng. Res., 50(4), 672-677(2012). https://doi.org/10.9713/kcer.2012.50.4.672
  17. Singh, D., Puri, M., Wilkens, S., Mathur, S. A., Tuli, K. D. and Barrow, J. C., "Characterization of a New Zeaxanthin Producing Strain of Chlorella saccharophila Isolated from New Zealand Marine Waters," Bioresour. Technol., 143, 308-314(2013). https://doi.org/10.1016/j.biortech.2013.06.006
  18. Tan, K. C. and Johns, R. M., "Fatty Acid Production by Heterotrophic Chlorella saccharophila," Hydrobiologia., 215, 13-19(1991). https://doi.org/10.1007/BF00005896
  19. Tompkins, J., Deville, M. M., Day, J. G., Turner, M. F., The Culture Collection of Algae and Protozoa. Ambleside, Institute of Freshwater Ecology, 204(1995).
  20. Andersen, R. A., Berges, J. A., Harrison, J. P., Watanabe, M.M., in R. A. Andersen (Ed.), Algal culturing techniques, Burlington Elsevier San Diego and London, Academic Press, 429-532(2005).
  21. Kim, A. R., Kim, H. S., Park, M. R., Kim, S. K. and Jeong, G. T., "Application of Lignocellulosic and Macro-algae Hydrolysates for Culture of Chlorella Saccharophila," Microbiol. Biotechnol. Lett., 44, 522-528(2016). https://doi.org/10.4014/mbl.1608.08007
  22. Folch, J., Lees, M. and Sloane-Stanley, G. H., "A Simple Method for the Isolation and Purification of Total Lipid from Animal Tissues," J Biochem., 226, 497-502(1957).
  23. Kim, J. K., Park, H. J., Kim, Y. H., Joo, H., Lee, S. H. and Lee, J. H., "UV-induced Mutagenesis of Nannochloropsis oculata for the Increase of Lipid Accumulation and Its Characterization," J. Korean Ind. Eng. Chem., 24, 155-160(2013).
  24. Liang, Y., Sarkany, N., Cui, Y., "Biomass and Lipid Productivities of Chlorella vulgaris under Autotrophic, Heterotrophic and Mixotrophic Growth Conditions," Biotechnol. Lett., 31, 1043-1049(2009). https://doi.org/10.1007/s10529-009-9975-7
  25. Heidari, M., Kariminia, H., Shayegan, J., "Effect of Culture Age and Initial Inoculum Size on Lipid Accumulation and Productivity in a Hybrid Cultivation System of Chlorella Vulgaris," Process Saf. Environ. Prot., 104, 111-122(2016). https://doi.org/10.1016/j.psep.2016.07.012
  26. Nigam, S., Rai, M. P., Sharma, R., "Effect of Nitrogen on Growth and Lipid Content of Chlorella Pyrenoidosa," Am. J. Biochem. Biotechnol., 7(3), 124-129(2011). https://doi.org/10.3844/ajbbsp.2011.124.129
  27. Ra, C. H., Kang, C. H., Jung, J. H., Jeong, G. T., Kim, S. K., "Enhanced Biomass Production and Lipid Accumulation of Picochlorum atomus using Light-Emitting Diodes (LEDs)," Bioresour. Technol., 218, 1279-1283(2016). https://doi.org/10.1016/j.biortech.2016.07.078