DOI QR코드

DOI QR Code

전기방사를 이용한 탄소나노튜브 폴리머 공기정화 멤브레인 개발

Development of Electrospun Cellulose Acetate Membranes using Carbon Nanotubes for Filtration of Particulate Matter in the Air

  • 박소연 (창원대학교 화공시스템공학과) ;
  • 김재혁 (부산대학교 화공생명.환경공학부 환경공학전공) ;
  • 한상일 (창원대학교 화공시스템공학과)
  • Park, Soyeon (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Jaehyuk (Department of Chemical and Environmental Engineering, Pusan National University,) ;
  • Han, Sangil (Department of Chemical Engineering, Changwon National University)
  • 투고 : 2016.10.12
  • 심사 : 2016.12.05
  • 발행 : 2017.02.01

초록

공기 중 분포하는 직경 $0.01{\mu}m{\sim}10{\mu}m$ 이하의 공기 중 미세입자는 섬유 층으로 구성된 멤브레인을 이용하여 제거될 수 있다. 전기 방사 기술, 용융방사, 용액방사, 겔 상태방사와 같은 필터 섬유 제조 기술 중 전기 방사 기술이 최근 가장 주목 받고 있으며, 다른 기술들에 비하여 수백 나노~수십 마이크로미터 정도의 균일한 직경의 섬유를 제조할 수 있다. 전기 방사 기술로 개방된 내부 구조, 넓은 다공성, 내부 표면적을 가지는 멤브레인을 제조할 수 있으므로, 전기 방사 멤브레인의 여과 성능이 눈에 띄는 향상을 보일 것으로 예상된다. 본 연구에서는 멤브레인 필터 섬유 두께, 밀도, 탄소나노튜브 첨가 등에 따른 분리 효율을 비교하였다. 분리 효율은 기공 크기가 작을수록, 섬유가 촘촘히 배열될수록 증가하였다.

The removal of particulate matter ranging from $0.01{\mu}m{\sim}10{\mu}m$ can be performed by using membrane filters composed of fibers. Electrospinning techniques offer the production of very thin fibers with a uniform fiber diameter over conventional techniques including template synthesis, melt-blown, phase separation, etc. Air filtration will be improved with electrospun membranes due to the open pore structures, high porosity, and large surface area of the membranes. In the present study, filtration efficiency increased with pore size decrease and fiber density increase induced by carbon nanotube and the increased CA (cellulose acetate) concentration during electrospinning process.

키워드

참고문헌

  1. Jones, A. P., "Indoor Air Quality and Health," Atmos. Environ., 33, 4535-4564(1999). https://doi.org/10.1016/S1352-2310(99)00272-1
  2. Park, S. S., Cho, S. Y. and Kim, S. J., "Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area," Korean Chem. Eng. Res., 48(1), 20-26(2010).
  3. Kim, Y. P., "Air Pollution in Seoul Caused by Aerosols," J. KOSAE, 22(5), 535-553(2006).
  4. Yoo, E. and Park, O., "A Study on the Formation of Photochemical Air Pollution and the Allocation of a Monitoring Network in Busan," Korean J. Chem. Eng., 27(2), 494-503(2010). https://doi.org/10.1007/s11814-010-0076-z
  5. Kim, G., Ahn, Y. and Lee, J., "Characteristic Analysis of Electret Filters made by Electrospinning," Korean Journal Of Air-Conditioning and Refrigeration Engineering, 20(12), 820-824(2008).
  6. Wang, N., Si, Y., Wang, N., Sun G., El-Newehy, M., Al-Deyab, S. S. and Ding, B., "Multilevel Structured Polyacrylonitrile/silica Nanofibrous Membranes for High-performance Air Filtration," Sep. Pur. Technol., 126, 44-51(2014). https://doi.org/10.1016/j.seppur.2014.02.017
  7. Wang, X., Kim, K., Lee, C. and Kim, J., "Prediction of Air Filter Efficiency and Pressure Drop in Air Filtration Media Using a Stochastic Simulation," Fibers and Polymers, 9(1), 34-38(2008). https://doi.org/10.1007/s12221-008-0006-4
  8. Mottaghitalab, V. and Haghi, A. K., "A Study on Electrospinning of Polyacrylonitrile Nanofibers," Korean J. Chem. Eng., 28(1), 114-118(2011). https://doi.org/10.1007/s11814-010-0348-7
  9. Go, H., Yoon, H., Lee, H.,Hong, S., Lee, H., Park, G. and Kim, G., "Preparation of PCL/CNT Nanofiber by Electrospinning," The Korean Society of Mechanical Engineers, 2912-2916(2009).
  10. Huang, Z., Zhang, Y.-Z., Kotakic, M. and Ramakrishna, S., "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Composites Science and Technology, 63, 2223-2253(2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  11. Balgis, R., Kartikowati, C. W., Ogi, T., Gradon, L., Bao, L., Seki, K. and Okuyama, K. "Synthesis Andevaluationofstraightandbeadfreenanofibers for Improvedaerosol Filtration," Chem. Eng. Sci., 137, 947-954(2015). https://doi.org/10.1016/j.ces.2015.07.038
  12. Shin, D., Jin, E., Lee, Y., Kwon, W., Kim, Y., Kim, S. and Riu, D., "$TiO_2-SiO_2$ Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution," Korean Chem. Eng. Res., 53(3), 276-281(2015). https://doi.org/10.9713/kcer.2015.53.3.276
  13. Gupta, P., Elkins, C., Long, T. E. and Wilkes, G. L. "Electrospinning of Linear Homopolymers of Poly(methyl methacrylate): Exploring Relationships Between Fiber Formation, Viscosity, Molecular Weight and Concentration in a Good Solvent," Polymer, 46(13), 4799-4810(2005). https://doi.org/10.1016/j.polymer.2005.04.021
  14. Han, S. and Rutledge, G. C., "Thermoregulated Gas Transport Through Electrospun Nanofiber Membranes," Chem. Eng. Sci., 123, 557-563(2015). https://doi.org/10.1016/j.ces.2014.11.040
  15. Reneker, D. H. and Yarin, A. L., "Electrospinning Jets and Polymer Nanofibers," Polymer, 49, 2387-2425(2008). https://doi.org/10.1016/j.polymer.2008.02.002
  16. Zhang, Y., Yuan, S., Feng, X., Li, H., Zhou, J. and Wang, B., "Preparation of Nanofibrous Metal-Organic Framework Filters for Efficient Air Pollution Control," J. Am. Chem. Soc., 138, 5785-5788(2016). https://doi.org/10.1021/jacs.6b02553
  17. Schneider, C. A., Rasband, W. S. and Eliceiri, K. W., "NIH Image to Image J: 25 years of Image nalysis," Nat. Methods, 9(7), 671-675(2012). https://doi.org/10.1038/nmeth.2089