DOI QR코드

DOI QR Code

Angular Dependence of Exchange Bias in NiFe/MnIr Bilayers

NiFe/MnIr 박막에서 교환 바이어스의 각도 의존성 연구

  • Received : 2017.02.05
  • Accepted : 2017.02.13
  • Published : 2017.02.28

Abstract

In this report, we calculated the angular dependence of exchange bias ($H_{ex}$) by using single domain model in exchange coupled ferromagnetic (F)/antiferromagnetic (AF) bilayers, which results with AF thickness ($t_{AF}$) were used for the analysis of measured ones in NiFe/MnIr bilayers. Angular dependence of $H_{ex}$ calculated at $t_{AF}$ > $t_c$ showed typical unidirectional behaviors, however, calculated one at $0.5t_c$ < $t_{AF}$ < $t_c$ showed peculiar angular behaviors by fixed AF spins at specified angle near ${\theta}_H=90^{\circ}$. Angular dependence of $H_{ex}$ measured in NiFe/MnIr (20 nm) bilayers showed typical unidirectional behaviors. However, measured one in NiFe/MnIr (4 nm) bilayers showed mixed behaviors including both of unidirectional and peculiar angular behaviors, which was explained by the grain size distribution of polycrystalline MnIr.

본 연구에서는 교환 결합력을 갖는 강자성/반강자성(AF) 박막에서 단자구 모델을 사용하여 교환 바이어스($H_{ex}$)의 각도 의존성을 계산하였으며, NiFe/MnIr 박막에서 측정한 결과와 비교 분석하였다. AF층 두께가 임계 두께 이상에서($t_{AF}$ > $t_c$) 계산한 $H_{ex}$의 각도 의존성은 전형적인 일방 이방성 특성을 보였으나, $0.5t_c$ < $t_{AF}$ < $t_c$에서는 $90^{\circ}$ 근처의 특정한 각도에서 AF 스핀의 고정에 의한 독특한 $H_{ex}$의 각도 의존성을 보였다. NiFe/MnIr(20 nm) 박막에서 측정한 $H_{ex}$의 각도 의존성은 전형적인 일방 이방성 특성을 보였으나, NiFe/MnIr(4 nm) 박막에서는 일방 이방성 특성과 AF 스핀의 고정에 의한 특성이 혼합된 결과를 보였으며, 이는 다결정 구조를 갖는 MnIr의 입도 분포 특성으로 설명되어짐을 알 수 있었다.

Keywords

References

  1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). https://doi.org/10.1103/PhysRev.102.1413
  2. W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962). https://doi.org/10.1063/1.1728716
  3. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). https://doi.org/10.1016/S0304-8853(99)00453-9
  4. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001). https://doi.org/10.1016/S0304-8853(01)00421-8
  5. G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 2489 (1989).
  6. S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nature Mat. 3, 862 (2004). https://doi.org/10.1038/nmat1256
  7. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mat. 3 868 (2004). https://doi.org/10.1038/nmat1257
  8. M. Ali, C. H. Marrows, M. Al-Jawad, B. J. Hickey A. Misra, U. Nowak, and K. D. Usadel, Phys. Rev. B 68, 214420 (2003). https://doi.org/10.1103/PhysRevB.68.214420
  9. H. Xi and R. M. White, J. Appl. Phys. 86, 5169 (1999). https://doi.org/10.1063/1.371495
  10. H. Xi, M. H. Kryder, and R. M. White, Appl. Phys. Lett. 74, 2687 (1999). https://doi.org/10.1063/1.123937
  11. J. Camarareo, J. Sort, A. Hoffmann, J. M. Garcia-Martin, B. Dieny, R. Miranda, and J. Nogues, Phys. Rev. Lett. 95, 057204 (2005). https://doi.org/10.1103/PhysRevLett.95.057204
  12. D. Y. Kim and S. S. Yoon, J. Kor. Mag. Soc. 24, 140 (2014). https://doi.org/10.4283/JKMS.2014.24.5.140
  13. K. Imakita, M. Tsunoda, and M. Takahashi, J. Magn. Magn. Mater. 286, 284 (2005).
  14. T. Sato, M. Tsunoda, and M. Takahashi, J. Appl. Phys. 95, 7513 (2004). https://doi.org/10.1063/1.1669116
  15. M. Tsunoda, Y. Tsuchiya, T. Hashimoto, and M. Takahashi, J. Appl. Phys. 87, 4375 (2000). https://doi.org/10.1063/1.373081