References
- Pfaller MA, Pappas PG, Wingard JR. 2006. Invasive fungal pathogens: current epidemiological trends. Clin. Infect. Dis. 43: S3-S14. https://doi.org/10.1086/504490
- Eliopoulos GM, Perea S, Patterson TF. 2002. Antifungal resistance in pathogenic fungi. Clin. Infect. Dis. 35: 1073-1080. https://doi.org/10.1086/344058
- Jenkinson HF, Douglas LJ. 2002. Interactions between Candida species and bacteria in mixed infections. Brogden KA, Guthmiller JM (eds.). Polymicrobial Diseases. ASM Press, Washington, DC.
- Lortholary O, Dupont B. 1997. Antifungal prophylaxis during neutropenia and immunodeficiency. Clin. Microbiol. Rev. 10: 477-504.
- Vandeputte P, Ferrari S, Coste AT. 2011. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012: 1-26.
- White TC, Marr KA, Bowden RA. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382-402.
- Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD. 2012. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 109: 2234-2239. https://doi.org/10.1073/pnas.1117280109
- Carrillo-Munoz AJ, Giusiano G, Ezkurra PA, Quindos G. 2006. Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioter. 19: 130-139.
- Kurtz M, Douglas C. 1997. Lipopeptide inhibitors of fungal glucan synthase. J. Med. Vet. Mycol. 35: 79-86. https://doi.org/10.1080/02681219780000961
- Vermes A, Guchelaar HJ, Dankert J. 2000. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46: 171-179. https://doi.org/10.1093/jac/46.2.171
- Carson CF, Mee BJ, Riley TV. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46: 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
- Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267. https://doi.org/10.1128/MMBR.00045-10
- Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
- Kim CM, Shin MK, Ahn DK, Lee KS (eds.). 1998. The Encyclopedia of Oriental Herbal Medicine (Korean version), 1st Ed. Jeongdam Press, Seoul, Korea.
- Zhang W, Dai SM. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. Int. Immunopharmacol. 14: 27-31. https://doi.org/10.1016/j.intimp.2012.06.001
- Clinical and Laboratory Standards Institute. 2008. M27-A3. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard. 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
- Liu M, Seidel V, Katerere DR, Gray AI. 2007. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329. https://doi.org/10.1016/j.ymeth.2007.02.013
- Frost DJ, Brandt KD, Cugier D, Goldman R. 1995. A wholecell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiot. 48: 306-310. https://doi.org/10.7164/antibiotics.48.306
-
Shedletzky E, Unger C, Delmer DP. 1997. A microtiter-based fluorescence assay for (1,3)-
${\beta}$ -glucan synthases. Anal. Biochem. 249: 88-93. https://doi.org/10.1006/abio.1997.2162 -
Lee HS, Kim Y. 2016. Antifungal activity of Salvia miltiorrhiza against Candida albicans is associated with the alteration of membrane permeability and (1,3)-
${\beta}$ -D-glucan synthase activity. J. Microbiol. Biotechnol. 26: 610-617. https://doi.org/10.4014/jmb.1511.11009 - Vaara M, Vaara T. 1981. Outer membrane permeability barrier disruption by polymixin in polymixin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19: 578-583. https://doi.org/10.1128/AAC.19.4.578
- Lee HS, Kim Y. 2014. Antifungal activity of Rheum undulatum on Candida albicans by the changes in membrane permeability. Korean J. Microbiol. 50: 360-367. https://doi.org/10.7845/kjm.2014.4085
- Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, et al. 2015. Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus 4: 672. https://doi.org/10.1186/s40064-015-1476-7
- Choi IH, Kim Y, Lee DN, Kim HJ. 2005. Antifungal effects of Cinamon Ramulus, Pulsatillae Radix, Dictamni Radicis Cortex, Paeonia Radix, Arecae Semen, Artemisiae Capillaries Herba against Candida albicans. Korean J. Orient. Physiol. Pathol. 19: 690-695.
-
Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, et al. 2000. Discovery of novel antifungal (1,3)-
${\beta}$ -D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 44: 368-377. https://doi.org/10.1128/AAC.44.2.368-377.2000 - Chandra J, Patel JD, Li J, Zhou G, Mukherjee PK, McCormick TS, et al. 2005. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl. Environ. Microbiol. 71: 8795-8801. https://doi.org/10.1128/AEM.71.12.8795-8801.2005
-
Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. 1986. The rate of killing of Escherichia coli by
${\beta}$ -lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Gen. Microbiol. 132: 1297-1304. - Ehara M, Noguchi T, Ueda K. 1996. Uptake of neutral red by the vacuoles of a green alga, Micrasterias pinnatifida. Plant Cell Physiol. 37: 734-741. https://doi.org/10.1093/oxfordjournals.pcp.a029007
- Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. 2007. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. C 146: 281-300.
- Li SC, Kane PM. 2009. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 1793: 650-663. https://doi.org/10.1016/j.bbamcr.2008.08.003
-
Wilson HA, Chused TM. 1985. Lymphocyte membrane potential and
$Ca^{2+}$ sensitivity potassium channels described by oxonol dye fluorescence measurements. J. Cell. Physiol. 125: 72-81. https://doi.org/10.1002/jcp.1041250110 - Volkov V. 2015. Quantitative description of ion transport via plasma membrane of yeast and small cells. Front. Plant Sci. 6: 1-22.
- Devi KP, Nisha SA, Sakthivel R, Pandian SK. 2010. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130: 107-115. https://doi.org/10.1016/j.jep.2010.04.025
Cited by
- iTRAQ Proteomic Analysis Reveals That Metabolic Pathways Involving Energy Metabolism Are Affected by Tea Tree Oil in Botrytis cinerea vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01989
- Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis vol.28, pp.3, 2018, https://doi.org/10.4014/jmb.1712.12041
- Plant-Derived Substances in the Fight Against Infections Caused by Candida Species vol.21, pp.17, 2020, https://doi.org/10.3390/ijms21176131
- Aucklandia lappa Causes Membrane Permeation of Candida albicans vol.30, pp.12, 2017, https://doi.org/10.4014/jmb.2009.09044
- Herbal Extracts with Antifungal Activity against Candida albicans: A Systematic Review vol.21, pp.1, 2017, https://doi.org/10.2174/1389557520666200628032116