References
- Roeder GS. 1997. Meiotic chromosomes: it takes two to tango. Genes Dev. 11: 2600-2621. https://doi.org/10.1101/gad.11.20.2600
- Kleckner N, Zhang L, Weiner B, Zickler D. 2011. Meiotic chromosome dynamics. In Rippe K (ed.). Genome Organization and Function in the Cell Nucleus, Ch. 19. WileyVCH, Weinheim Germany.
- Zickler D, Kleckner N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33: 603-754. https://doi.org/10.1146/annurev.genet.33.1.603
- Arora C, Kee K, Maleki S, Keeney S. 2004. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol. Cell 13: 549-559. https://doi.org/10.1016/S1097-2765(04)00063-2
- Kee K, Protacio RU, Arora C, Keeney S. 2004. Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J. 23: 1815-1824. https://doi.org/10.1038/sj.emboj.7600184
- Keeney S. 2001. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52: 1-53.
- Prieler S, Penkner A, Borde V, Klein F. 2005. The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev. 19: 255-269. https://doi.org/10.1101/gad.321105
- Paull TT, Gellert M. The 3' to 5' exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1: 969-979.
- Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T. 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95: 705-716. https://doi.org/10.1016/S0092-8674(00)81640-2
- Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-125. https://doi.org/10.1038/nature13771
- Gasior SL, Wong AK, Kora Y, Shinohara A, Bishop DK. 1998. Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination complexes. Genes Dev. 12: 2208-2221. https://doi.org/10.1101/gad.12.14.2208
- Hays SL, Firmenich AA, Berg P. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92: 6925-6929. https://doi.org/10.1073/pnas.92.15.6925
- Sugiyama T, Zaitseva EM, Kowalczykowski SC. 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 272: 7940-7945. https://doi.org/10.1074/jbc.272.12.7940
- Sung P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the R ad51 recombinase. J. Biol. Chem. 272: 28194-28197. https://doi.org/10.1074/jbc.272.45.28194
- Hong EL, Shinohara A, Bishop DK. 2001. Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J. Biol. Chem. 276: 41906-41912. https://doi.org/10.1074/jbc.M105563200
- Bishop DK. 1994. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79: 1081-1092. https://doi.org/10.1016/0092-8674(94)90038-8
- Shinohara A, Ogawa H, Ogawa T. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457-470. https://doi.org/10.1016/0092-8674(92)90447-K
- Krejci L, Altmannova V, Spirek M, Zhao X. 2012. Homologous recombination and its regulation. Nucleic Acids Res. 40: 5795-5818. https://doi.org/10.1093/nar/gks270
- Hong S, Sung Y, Yu M, Lee M, Kleckner N, Kim KP. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51: 440-453. https://doi.org/10.1016/j.molcel.2013.08.008
- Jiang H, Xie Y, Houston P, Stemke-Hale K, Mortensen UH, Rothstein R, Kodadek T. 1996. Direct association between the yeast Rad51 and Rad54 recombination proteins. J. Biol. Chem. 271: 33181-33186. https://doi.org/10.1074/jbc.271.52.33181
- Sehorn MG, Sung P. 2004. Meiotic recombination: an affair of two recombinases. Cell Cycle 3: 1375-1377. https://doi.org/10.4161/cc.3.11.1364
- Sung P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast Rad51 protein. Science 265: 1241-1243. https://doi.org/10.1126/science.8066464
- Bishop DK, Park D, Xu L, Kleckner N. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439-456. https://doi.org/10.1016/0092-8674(92)90446-J
- Bishop DK, Zickler D. 2004. Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117: 9-15. https://doi.org/10.1016/S0092-8674(04)00297-1
- Sasanuma H, Tawaramoto MS, Lao JP, Hosaka H, Sanda E, Suzuki M, et al. 2013. A new protein complex promoting the assembly of Rad51 filaments. Nat. Commun. 4: 1676. https://doi.org/10.1038/ncomms2678
- Busygina V, Sehorn MG, Shi IY, Tsubouchi H, Roeder GS, Sung P. 2008. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev. 22: 786-795. https://doi.org/10.1101/gad.1638708
- Tsubouchi H, Roeder GS. 2006. Budding yeast Hed1 downregulates the mitotic recombination machinery when meiotic recombination is impaired. Genes Dev. 20: 1766-1775. https://doi.org/10.1101/gad.1422506
- Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, et al. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947-962. https://doi.org/10.1002/yea.1142
- Hong S, Kim KP. 2013. Shu1 promotes homolog bias of meiotic recombination in Saccharomyces cerevisiae. Mol. Cells 36: 446-454. https://doi.org/10.1007/s10059-013-0215-6
- Lee MS, Yoon SW, Kim KP. 2015. Mitotic cohesin subunit Mcd1 regulates the progression of meiotic recombination in budding yeast. J. Microbiol. Biotechnol. 25: 598-605. https://doi.org/10.4014/jmb.1501.01081
- Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143: 924-937. https://doi.org/10.1016/j.cell.2010.11.015
- Schwacha A, Kleckner N. 1994. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76: 51-63. https://doi.org/10.1016/0092-8674(94)90172-4
- Cho HR, Kong YJ, Hong SG, Kim KP. 2016. Hop2 and Sae3 are required for Dmc1-mediated double-strand break repair via homolog bias during meiosis. Mol. Cells 39: 550-556. https://doi.org/10.14348/molcells.2016.0069
- Hong S, Choi EH, Kim KP. 2015. Ycs4 is required for efficient double-strand break formation and homologous recombination during meiosis. J. Microbiol. Biotechnol. 25: 1026-1035. https://doi.org/10.4014/jmb.1504.04013
- Lee MS, Yu M, Kim KY, Park GH, Kim KP. 2015. Functional validation of rare human genetic variants involved in homologous recombination using Saccharomyces cerevisiae. PLoS One 10: e0124152. https://doi.org/10.1371/journal.pone.0124152
- Yoon SW, Lee MS, Xaver M, Zhang L, Hong SG, Kong YJ, et al. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44: 9296-9314.
- Lao JP, Cloud V, Huang CC, Grubb J, Thacker D, Lee CY, et al. 2013. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS Genet. 9: e1003978. https://doi.org/10.1371/journal.pgen.1003978
Cited by
- Roles of Budding Yeast Hrr25 in Recombination and Sporulation vol.27, pp.6, 2017, https://doi.org/10.4014/jmb.1701.01016