References
- Tevz G, Bencina M, Legisa M. 2010. Enhancing itaconic acid production by Aspergillus terreus. Appl. Microbiol. Biotechnol. 87: 1657-1664. https://doi.org/10.1007/s00253-010-2642-z
- Willke T, Vorlop KD. 2001. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56: 289-295. https://doi.org/10.1007/s002530100685
- Tong X, Ma Y, Li Y. 2010. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A Gen. 385: 1-13. https://doi.org/10.1016/j.apcata.2010.06.049
- Steiger MG, Blumhoff ML, Mattanovich D, Sauer M. 2013. Biochemistry of microbial itaconic acid production. Front. Microbiol. 4: 23.
- Gyamerah M. 1995. Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl. Microbiol. Biotechnol. 44: 356-361. https://doi.org/10.1007/BF00169929
- Alberto F, Navarro D, de Vries RP, Asther M, Record E. 2009. Technical advance in fungal biotechnology: development of a miniaturized culture method and an automated highthroughput screening. Lett. Appl. Microbiol. 49: 278-282. https://doi.org/10.1111/j.1472-765X.2009.02655.x
- Fernandes P, Cabral JMS. 2006. Microlitre/millilitre shaken bioreactors in fermentative and biotransformation processes - a review. Biocatal. Biotransformation 24: 237-252. https://doi.org/10.1080/10242420600667684
- Studer MH, DeMartini JD, Brethauer S, McKenzie HL, Wyman CE. 2010. Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol. Bioeng. 105: 231-238. https://doi.org/10.1002/bit.22527
- Markert S, Joeris K. 2017. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization. Biotechnol. Bioeng. 114: 113-121. https://doi.org/10.1002/bit.26044
- Betts JI, Baganz F. 2006. Miniature bioreactors: current practices and future opportunities. Microb. Cell Fact. 5: 21. https://doi.org/10.1186/1475-2859-5-21
- Archer DB, Connerton IF, MacKenzie DA. 2008. Filamentous fungi for production of food additives and processing aids. Adv. Biochem. Eng. Biotechnol. 111: 99-147.
- Doran PM. 1995. Mass transfer, pp. 190-217. In Doran PM(ed.). Bioprocess Engineering Principles. Academic Press, London.
- Doran PM. 1995. Heterogeneous reactions, pp. 297-332. In Doran PM (ed.). Bioprocess Engineering Principles. Academic Press, London.
- Margaritis A, Zajic JE. 1978. Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnol. Bioeng. 20: 939-1001. https://doi.org/10.1002/bit.260200702
- Hong HP. 2010. Enhanced production of polysaccharides through strain improvement and medium optimization in suspended mycelial fermentations of Inonotus obliquus. M.Sc. Thesis. Kangwon National University, Korea.
- Song SK. 2006. Development of lovastatin high yielding transformants through introduction of a regulatory gene of lovastatin biosynthesis, and establishment of computercontrolled bioprocess system for enhanced production of lovastatin by immobilized Aspergillus terreus cells. Kangwon National Univerisity, Korea.
- Song SK, Jeong YS, Kim PH, Chun GT. 2006. Effects of dissolved oxygen level on avermectin B1a production by Streptomyces avermitilis in computer-controlled bioreactor cultures. J. Microbiol. Biotechnol. 16: 1690-1698.
-
Shin WS. 2007. Control of morphology in multi-stage bioreactor suspended cultures for the enhanced production of
${\beta}$ -D-glucan from fungal mycelia of Phellinus linteus. Kangwon National University, Korea. -
Shin WS, Kwon YJ, Jeong YS, Chun GT. 2009. Importance of strain improvement and control of fungal cells morphology for enhanced production of protein-bound polysaccharides (
${\beta}$ -D-glucan) in suspended cultures of Phellinus linteus mycelia. Kor. Chem. Eng. Res. 47: 220-229. - Gbewonyo K, Wang DI. 1983. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column. Biotechnol. Bioeng. 25: 2873-2887. https://doi.org/10.1002/bit.260251206
- Cianchetta S, Galletti S, Burzi PL, Cerato C. 2010. A novel microplate-based screening strategy to assess the cellulolytic potential of Trichoderma strains. Biotechnol. Bioeng. 107: 461-468. https://doi.org/10.1002/bit.22816
- McConnell SJ, Dinh T, Le MH, Spinella DG. 1999. Biopanning phage display libraries using magnetic beads vs. polystyrene plates. Biotechniques 26: 208-210, 214.
- Rowlands RT. 1984. Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microb. Technol. 6: 3-10. https://doi.org/10.1016/0141-0229(84)90070-X
- Zhang X, Yang ST. 2011. High-throughput 3-D cell-based proliferation and cytotoxicity assays for drug screening and bioprocess development. J. Biotechnol. 151: 186-193. https://doi.org/10.1016/j.jbiotec.2010.11.012
- Baltz RH, Demain AL, Davies JE. 2010. Manual of Industrial Microbiology and Biotechnology, pp. 103-113. ASM Press, Washington, DC.
- Demain AL. 1971. Overproduction of microbial metabolites and enzymes due to alteration of regulation, pp. 113-142. In Ghose TK, Fiechter A (eds.). Advances in Biochemical Engineering, Vol. 1. Springer Berlin-Heidelberg.
- Gyamerah MH. 1995. Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl. Microbiol. Biotechnol. 44: 20-26. https://doi.org/10.1007/BF00164475
- Crueger W, Crueger A. 1990. Biotechnology: A Textbook of Industrial Microbiology. Sinauer, Sunderland, MA.
- Omstead MN, Kaplan L, Buckland BC. 1989. Fermentation development and process improvement, pp. 33-54. In Campbell WC (ed.). Ivermectin and Abamectin. Springer, New York, NY.
- Kwon HK. 1999. The effect of morphology on production of lovastatin, cholesterol lowering agent, by Aspergillus terreus. Kangwon National University, Korea.
- Levinson WE, Kurtzman CP, Kuo TM. 2006. Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb. Technol. 39: 824-827. https://doi.org/10.1016/j.enzmictec.2006.01.005
- John GT, Klimant I, Wittmann C, Heinzle E. 2003. Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol. Bioeng. 81: 829-836. https://doi.org/10.1002/bit.10534
- Shin WS, Lee D, Kim S, Jeong YS, Chun GT. 2013. Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J. Microbiol. Biotechnol. 23: 1445-1453. https://doi.org/10.4014/jmb.1307.07084
- Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P. 2013. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl. Microbiol. Biotechnol. 97: 3901-3911. https://doi.org/10.1007/s00253-012-4684-x
Cited by
- Synthesis of itaconic acid from agricultural waste using novel Aspergillus niveus vol.48, pp.7, 2017, https://doi.org/10.1080/10826068.2018.1476884
- High throughput, small scale methods to characterise the growth of marine fungi vol.15, pp.8, 2017, https://doi.org/10.1371/journal.pone.0236822