DOI QR코드

DOI QR Code

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Zhao, Xihua (College of Life Science, Jiangxi Normal University) ;
  • He, Yuanzhi (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Yang, Tianxing (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Gao, Huifang (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Li, Ganxin (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Chen, Feixue (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Sun, Meijing (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University) ;
  • Zhang, Liaoyuan (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University)
  • Received : 2016.08.31
  • Accepted : 2016.09.29
  • Published : 2017.01.28

Abstract

Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Keywords

References

  1. Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. 2012. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 119: 94-98. https://doi.org/10.1016/j.biortech.2012.05.108
  2. Zhang LJ, Liu QY, Ge YS, Li LX, Gao C, Xu P, Ma CQ. 2016. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem. 18: 1560-1570. https://doi.org/10.1039/C5GC01638J
  3. Zhang LY, Chen S, Xie HB, Tian YT, Hu KH. 2012. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol. 87: 1551-1557. https://doi.org/10.1002/jctb.3791
  4. Wang XQ, Lv M, Zhang LJ, Li K, Gao C, Ma CQ, Xu P. 2013. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. Biotechnol. Biofuels 6: 155. https://doi.org/10.1186/1754-6834-6-155
  5. Xiao ZJ, Lv CJ, Gao C, Qin JY, Ma CQ, Liu Z, et al. 2010. A novel whole-cell biocatalyst with $NAD^{+}$ regeneration for production of chiral chemicals. PLoS One 5: e8860. https://doi.org/10.1371/journal.pone.0008860
  6. Hilmi A, Belgsir E, Leger J, Lamy C. 1997. Electrocatalytic oxidation of aliphatic diols Part V. Electro-oxidation of butanediols on platinum based electrodes. J. Electroanal. Chem. 435: 69-75. https://doi.org/10.1016/S0022-0728(97)00007-7
  7. Slipszenko J, Griffiths S, Johnston P, Simons KE, Vermeer WAH, Wells PB. 1998. Enantioselective hydrogenation: V. Hydrogenation of butane-2,3-dione and of 3-hydroxybutan-2-one catalysed by cinchona-modified platinum. J. Catal. 179: 267-276. https://doi.org/10.1006/jcat.1998.2204
  8. Dai JY, Cheng L, He QF, Xiu ZL. 2015. High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Process Biochem. 11: 1730-1734.
  9. Gao C, Zhang LJ, Xie YJ, Hu CH, Zhang Y, Li LX, et al. 2013. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour. Technol. 137: 111-115. https://doi.org/10.1016/j.biortech.2013.02.115
  10. Kochius S, Paetzold M, Scholz A, Merkens H, Vogel A, Ansorge-Schumacher M, et al. 2014. Enantioselective enzymatic synthesis of the TEX>${\alpha}$-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. J. Mol. Catal. B Enzym. 103: 61-66. https://doi.org/10.1016/j.molcatb.2013.08.016
  11. Tolasch T, Solter S, Toth M, Ruther J, Francke W. 2003. (R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J. Chem. Ecol. 4: 1045-1050.
  12. Gao J, Xu YY, Li FW, Ding G. 2013. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett. Appl. Microbiol. 57: 274-281.
  13. He QY, Xia QJ, Wang YJ, Li X, Zhang Y, Hu B, Wang F. 2016. Biodiesel production: utilization of Loofah Sponge to immobilize Rhizopus chinensis CGMCC #3.0232 cells as a whole-cell biocatalyst. J. Microbiol. Biotechnol. 26: 1278-1284. https://doi.org/10.4014/jmb.1601.01075
  14. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215. https://doi.org/10.4014/jmb.1601.01002
  15. Li QZ, Shi Y, He L, Zhao H. 2016. Asymmetric bioconversion of acetophenone in nano-sized emulsion using Rhizopus oryzae. J. Microbiol. Biotechnol. 26: 72-79. https://doi.org/10.4014/jmb.1506.06043
  16. Wang Z, Song QQ, Yu ML, Wang YF, Xiong B, Zhang YJ, et al. 2014. Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl. Microbiol. Biotechnol. 2: 641-650.
  17. Nicholson W. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 22: 6832-6838.
  18. Yu B, Sun JB, Bommareddy RR, Song L, Zeng AP. 2011. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl. Environ. Microbiol. 77: 4230-4233. https://doi.org/10.1128/AEM.02998-10
  19. Chen C, Wei D, Shi JP, Wang M, Hao J. 2014. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 10: 4603-4613.
  20. Li LX, Zhang LJ, Li K, Wang Y, Gao C, Han BB, et al. 2013. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol. Biofuels 6: 123. https://doi.org/10.1186/1754-6834-6-123
  21. Wang Y, Tao F, Xu P. 2014. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 9: 6080-6090.
  22. Zhang LY, Xu QM, Peng XQ, Xu BH, Wu YH, Yang YL, et al. 2014. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30. J. Ind. Microbiol. Biotechnol. 41: 1319-1327. https://doi.org/10.1007/s10295-014-1472-x
  23. Yamada-Onodera K, Yamamoto H, Kawahara N, Tani Y. 2002. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnol. 22: 355-362. https://doi.org/10.1002/1521-3846(200207)22:3/4<355::AID-ABIO355>3.0.CO;2-6
  24. Zhang GL, Wang CW, Li C. 2012. Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnol. Lett. 34: 1519-1523. https://doi.org/10.1007/s10529-012-0933-4
  25. Zhang LY, Guo ZW, Chen JB, Xu QM, Lin H, Hu KH, et al. 2016. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241. Sci. Rep. 6: 19257. https://doi.org/10.1038/srep19257
  26. Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 1: 49-57.
  27. Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J. 2010. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour. Technol. 101: 1961-1967. https://doi.org/10.1016/j.biortech.2009.10.052
  28. Liu CH, Li XQ, Jiang XP, Zhuang MY, Ling XM, Zhang JX, et al. 2016. Preparation of functionalized graphene oxide nanocomposites for covalent immobilization of NADH oxidase. Nanosci. Nanotechnol. Lett. 8: 164-167. https://doi.org/10.1166/nnl.2016.2102
  29. Xu QM, Xie LX, Li YY, Lin H, Sun SJ, Guan X, et al. 2015. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J. Chem. Technol. Biotechnol. 90: 93-100. https://doi.org/10.1002/jctb.4293
  30. Zhang LY, Xu QM, Zhan SR, Li YY, Lin H, Sun SJ, et al. 2014. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl. Microbiol. Biotechnol. 98: 1175-1184. https://doi.org/10.1007/s00253-013-4959-x
  31. Geueke B, Riebel B, Hummel W. 2003. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme Microb. Technol. 32: 205-211. https://doi.org/10.1016/S0141-0229(02)00290-9
  32. Bao T, Zhang X, Rao ZM, Zhao XJ, Zhang RZ, Yang TW, et al. 2014. Efficient whole-cell biocatalyst for acetoin production with $NAD^{+}$ regeneration system through homologous coexpression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One 7: e102951.
  33. Horng YT, Chang KC, Chien CC, Wei YH, Sun YM, Soo PC. 2010. Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose P promoter in Escherichia coli. Lett. Appl. Microbiol. 50: 158-167. https://doi.org/10.1111/j.1472-765X.2009.02772.x
  34. Geckil H, Barak ZE, Chipman DM, Erenler SO, Webster DA, Stark BC. 2004. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst. Eng. 26: 325-330. https://doi.org/10.1007/s00449-004-0373-1
  35. Zhu H, Sun SJ, Zhang SS. 2011. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius. Bioresour. Technol. 102: 1747-1751. https://doi.org/10.1016/j.biortech.2010.08.085

Cited by

  1. Systematic metabolic engineering of Corynebacterium glutamicum for the industrial-level production of optically pure d-(−)-acetoin vol.19, pp.23, 2017, https://doi.org/10.1039/c7gc02753b
  2. Whole-cell biocatalysts by design vol.16, pp.None, 2017, https://doi.org/10.1186/s12934-017-0724-7
  3. Efficient (3 S )-Acetoin and (2 S ,3 S )-2,3-Butanediol Production from meso -2,3-Butanediol Using Whole-Cell Biocatalysis vol.23, pp.3, 2018, https://doi.org/10.3390/molecules23030691
  4. High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141 vol.42, pp.3, 2017, https://doi.org/10.1007/s00449-018-2051-8
  5. N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1 vol.29, pp.4, 2017, https://doi.org/10.4014/jmb.1810.10026
  6. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
  7. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method vol.18, pp.None, 2017, https://doi.org/10.1186/s12934-019-1183-0
  8. Fermentative production of chiral acetoin by wild-type Bacillus strains vol.50, pp.2, 2017, https://doi.org/10.1080/10826068.2019.1666280
  9. Phomopsis tersa as Inhibitor of Quorum Sensing System and Biofilm Forming Ability of Pseudomonas aeruginosa vol.60, pp.1, 2017, https://doi.org/10.1007/s12088-019-00840-y
  10. One-pot efficient biosynthesis of (3R)-acetoin from pyruvate by a two-enzyme cascade vol.10, pp.22, 2017, https://doi.org/10.1039/d0cy01332c
  11. Synthesis of Ligustrazine from Acetaldehyde by a Combined Biological-Chemical Approach vol.9, pp.11, 2017, https://doi.org/10.1021/acssynbio.0c00113
  12. Efficient 1-Hydroxy-2-Butanone Production from 1,2-Butanediol by Whole Cells of Engineered E. coli vol.11, pp.10, 2021, https://doi.org/10.3390/catal11101184
  13. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances vol.54, pp.None, 2017, https://doi.org/10.1016/j.biotechadv.2021.107783