DOI QR코드

DOI QR Code

C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases

  • 윤인석 (인덕대학교 건설정보공학과)
  • Yoon, In-Seok (Dept. of Construction Info. Eng., Induk University)
  • 투고 : 2016.09.22
  • 심사 : 2016.12.01
  • 발행 : 2017.02.28

초록

C-S-H 상은 시멘트 페이스트의 50~60%를 차지하는 중요한 수화생성물로서, 시멘트 페이스트의 공학적 특성을 결정짓는 가장 중요한 역할을 한다. 이것은 C-S-H 상이 본질적으로 안정되거나 강한 재료라서가 아니라 시멘트입자와 같이 결합하여 연속적인 레이어 층을 형성하기 때문이다. 결합상으로서 C-S-H 상은 나노 단위의 구조로부터 기인하는데, 내구성 측면에서는 염소이온의 흡착을 유발하는 것으로 알려져 있지만 그 메커니즘은 여전히 불분명하다. 그래서 본 연구에서는 C-S-H상이 염소이온 흡착에 미치는 거동을 살펴보고자 하였다. 본 연구의 목적은 다양한 Ca/Si 비율을 갖는 C-S-H 상이 염소이온을 흡착하는 시간의 존적 거동을 고찰하여 염소이온 고정화의 메커니즘을 구명하는 것이다. C-S-H 상은 순간적 물리흡착, 물리 화학적 흡착, 그리고 화학적 흡착의 3단계로 구분되어 순차적인 흡착거동을 보였는데, 순간적으로 흡착되는 표면착물량은 C-S-H 표면 대전체와 염소 이온간의 전기 상호작용에 의한 물리적 흡착에 의하여 발생한다. 높은 Ca/Si 비율에서 C-S-H 표면전하는 커지기 때문에 물리적 흡착은 커지지만 화학적 흡착은 오히려 작아지는 것으로 나타났다. 이는 C-S-H 표면에 물리적 흡착된 염소이온에 의하여 염소이온이 침투하지 못하고 화학적 흡착력까지 저하되기 때문으로 생각된다. 따라서 최대 염소이온 흡착력은 Ca/Si 비율 1.5에서 형성되었다.

C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

키워드

참고문헌

  1. Taylor, H. F. W., "Cement Chemistry", 2nd Edition, Thomas Telford, London, 1997.
  2. Gard, J. A., and Taylor, H. F. W., "Calcium Silicate Hydrate (II) ("C-S-H(II)")", Cement and Concrete Research, Vol. 6, 1976, pp. 667-678. https://doi.org/10.1016/0008-8846(76)90031-4
  3. Yasuo, A., "Cement Materials Chemistry", Revised Edition, 1990.
  4. Rasheeduzzafar., "Influence of Cement Composition on Concrete Durability", ACI Materials Journal, Vol. 89, No. 6, 1992, pp. 574-585.
  5. Ramachandran, V. S., "Possible State of Chloride in the Hydration of Tricalcium Silicate in the Presence of Calcium Chloride", Material and Structure, Vol. 4, No. 1, 1971, pp. 3-12.
  6. Tang, L., and Nilsson, L-O., "Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortar", Cement and Concrete Research, Vol. 23, No. 2, 1993, pp. 247-253. https://doi.org/10.1016/0008-8846(93)90089-R
  7. Yoon, I. S., "Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates", Journal of the Korea Concrete Institute, Vol. 27, No. 1, 2015, pp. 85-92. https://doi.org/10.4334/JKCI.2015.27.1.085
  8. Hirao, H., Yamada, K., Takahashi, H., and Zibra, H., "Chloride Binding of Cement Estimated by Binding Isotherm of Hydrates", Journal of Advanced Concrete Technology, Vol. 3, No. 1, 2005, pp. 77-84. https://doi.org/10.3151/jact.3.77
  9. Powders, T. C., "Structure and Physical Properties of Hardened Portland Cement Paste", Journal of the American Ceramic Society, Vol. 41, 1958, pp. 1-6.
  10. Feldman, R. F., and Sereda, P. J., "A Model for Hydrated Portland Cement Paste as Deduced from Sorption-Length Change and Mechanical Properties", Materials and Structures, Vol. 1, No. 6, 1968, pp. 50-520.
  11. Wittman, F. H., "Trends in Research on Creep and Shrinkage of Concrete", Cement Production and Use, New Hampshire, 1979, pp. 143-161.
  12. Jennings, H. M., "Model for the Developing Microstructure in Portland Cement Pastes", Cement and Concrete Research, Vol. 30, 2000, pp. 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4
  13. Fujii, K., and Kondo, W., "Estimation of Thermochemical Data for Calcium Silicate Hydrate(C-S-H)", Journal of the American Ceramic Society, Vol. 66, 1983, pp. C-220-221.
  14. Brouwers, H. J. H, "The Work of Powers and Brownyard Revisited: Part 1", Cement and Concrete Research, Vol. 34, pp. 1697-1716.
  15. Taylor, H. F. W., "Studies on the Chemistry and Microstructure of Cement Pastes", British Ceramic Prodceedings, Vol. 35, 1985, pp. 65-82.
  16. Richardson, I., and Groves, G. W., "Model Structure for C-(A)-S-H (I)", Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, Vol. 70, 2014, pp. 903-923. https://doi.org/10.1107/S2052520614021982
  17. Zibara, H., Hooton, R. D., Thomas, M. D. A., and Stanish K., "Influence of the C/S and C/A Ratios of Hydration Products on the Chloride Ion Binding Capacity of Lime-SF and Lime-MK Mixtures", Cement and Concrete Research, Vol. 38, 2008, pp. 422-426. https://doi.org/10.1016/j.cemconres.2007.08.024
  18. Nielsen, E. P., "The Durability of White Portland Cement to Chemical Attack", PhD Thesis, Technical University of Denmark, Report No. R-84, 2004.
  19. Beaudoin, J. J., Ramachandran, V. S., and Feldman, R. F., "Interaction of Chloride and C-S-H", Cement and Concrete Research, Vol. 20, No. 6, pp. 875-883, 1990. https://doi.org/10.1016/0008-8846(90)90049-4
  20. Yoon, S., Ha, J., Chae, S. R., Kilcyne, D. A., and Monteiro P. J. M., "X-Ray Spectromicroscopic Study of Interactions between NaCl and Calcium Silicate Hydrates", Magazine of Concrete Research, Vol. 66, No. 3, 2014, pp. 141-149. https://doi.org/10.1680/macr.13.00244
  21. Sugiyama, D, "Chemical Alteration of Calcium Silicate Hydrate (C-S-H) in Sodium Chloride Solution", Cement and Concrete Research, Vol. 38, No. 11, 2008, pp. 1270-1275. https://doi.org/10.1016/j.cemconres.2008.06.002
  22. Nagataki, S., Otsuki, N., Wee, T. H., and Natashita, K., "Condensation of Chloride Ion in Hardened Cement Matrix Materials and on Embedded Steel Bars", ACI Materials Journal, Vol. 90, No. 4, 1993, pp. 323-332.
  23. Yoon, I. S., "Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement", Journal of the Korea Concrete Institute, Vol. 19, No. 3, 2007, pp. 367-375. https://doi.org/10.4334/JKCI.2007.19.3.367
  24. Hosokawa, Y., Yamada, K., Johannesson, B. F., and Nilsson, L.-O., "Reproduction of Chloride Ion Binding in Hardened Cement Paste Using Thermodynamic Equilibrium Models", Taiheiyo Cement Kenkyu Hokoku, Japan, 151, 2005, pp. 1-12.
  25. Yamaguchi, G., and Takagi, S., "The Anlaysis of Portland Cement Clinker", Proceedings of the 5th international Symposium on the Chemistry of Cement, 1, Japan, 1969, pp. 181-218.
  26. Lu, P., Sun, G., and Young, J. F., "Phase Composition of Hydrated DSP Cement Paste", Journal of American Ceramic Society, Vol. 76, 1973, pp. 1003-1007.
  27. Brouwers, H. J. H., "The Work of Powders and Brownyard Revisited: Part I", Cement and Concrete Research, Vol. 34, 2004, pp. 1697-1716. https://doi.org/10.1016/j.cemconres.2004.05.031
  28. Garbev, K. Bornefeld, M., Beuchle, G., and Stemmermann, P., "Cell Dimensions and Composition of Nanocrystalline Calcium Silicate Hydrate Solid Solutions, Part 2: X-Ray and Thermogravimetry Study", Journal of American Ceramic Society, Vol. 91, 2008, pp. 3015-3023. https://doi.org/10.1111/j.1551-2916.2008.02601.x
  29. Brunauer, S., and Greenberg, S. A., "The Hydration of Tricalcium Silicate and Beta-Dicalcium Silicate at Room Temperature", National Bureau of Standards, Washington, DC, 1960.
  30. Thomas, J. J., Jennings, H. M., and Allen, A. J. "Relationships between Composition and Density of Tobermorite, Jennite, and Nanoscale CaO-$SiO_2-H_2O$", The Journal of Physical Chemistry, Vol. 114, No. 17, 2010, pp. 7594-7601.
  31. Richardson, G., "Tobermorite / Jennite and Tobermorite / Calcium Hydroxide - Based Models for Structure of C-S-H: Application to Hardened Paste of Tricalcium Silicate, ${\beta}$-Dicalcium Silicate, Portand Cement, and Blends of Portland Cement with Blast Furnace Slag, Metakaoloin, or Silicate", Cement and Concrete Research, Vol. 34, No. 9, 2004, pp. 1733-1777. https://doi.org/10.1016/j.cemconres.2004.05.034
  32. Termkhajornkit, P., Nawa, T., Fujisawa, J., and Minato, D., "Influence of Fly Ash Replacement Ratio on Composites of C-S-H Gels, Proceedings of JCI, Vol. 28, No. 1, 2006, pp. 281-286.
  33. Heath, T. G., and Tweed, C. J., "Thermodynamic Modeling of the Sorption of Radioelements onto Cementitious Materials", Materials Research Society Symposium Proceedings, No. 412, 1996, pp. 58-65.
  34. Pointeau, I., Reiller, P., and Mace, N., "Measurement and Modeling of the Surface Potential Evaluation of Hydrated Cement Pastes as a Function of Degradation", Journal of Colloid and Interface Science, Vol. 300, 2006, pp. 33-44. https://doi.org/10.1016/j.jcis.2006.03.018
  35. Vallis-Terasse, H., Nonat, A., and Petit, J. C., "Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations", Journal of Colloid and Interface Science, Vol. 244, 2001, pp. 58-65. https://doi.org/10.1006/jcis.2001.7897
  36. Elakneswaran, Y., and Nawa, T., and Kurumisawa, K., "Electrokinetic Potential of Hydrated Cement in Relation to Adsorption of Chlorides", Cement and Concrete Research, Vol. 39, 2009, pp. 340-344. https://doi.org/10.1016/j.cemconres.2009.01.006
  37. Sellevold, E. J., and Nilsen, T., "Condensed Silica Fume in Concrete: A World Review", Malhotra, V.M.(eds.), Supplementary Cementing Materials for Concrete, Ottawa, CANMET SP-86-8E, 1987, pp. 165-243.