References
- D. Aharonov, A necessary and sufficient condition for univalence of a meromorphic function, Duke Math. J. 36 (1969), 599-604. https://doi.org/10.1215/S0012-7094-69-03671-0
- R. M. Ali, V. Ravichandran, and N. Seenivasagan, Subordination and superordination on Schwarzian derivatives, J. Inequal. Appl. 2008 (2008), Article ID 712328, 18 pp.
- A. A. Antonino and S. S. Miller, Third-order differential inequalities and subordinations in the complex plane, Complex Var. Elliptic Equ. 56 (2011), no. 5, 439-454. https://doi.org/10.1080/17476931003728404
- R. Harmelin, Aharonov invariants and univalent functions, Israel J. Math. 43 (1982), no. 3, 244-254. https://doi.org/10.1007/BF02761945
- M. P. Jeyaraman and T. K. Suresh, Third-order differential subordination of analytic functions, Acta Univ. Apulensis Math. Inform. 35 (2013), 187-202.
- S. A. Kim and T. Sugawa, Invariant Schwarzian derivatives of higher order, Complex Anal. Oper. Theory 5 (2011), no. 3, 659-670. https://doi.org/10.1007/s11785-010-0081-6
- S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), no. 2, 289-305. https://doi.org/10.1016/0022-247X(78)90181-6
- S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker, New York, 2000.
- Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. https://doi.org/10.1090/S0002-9904-1949-09241-8
- Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700-704. https://doi.org/10.1090/S0002-9939-1954-0064145-2
- S. Owa and M. Obradovic, An application of differential subordinations and some criteria for univalency, Bull. Aust. Math. Soc. 41 (1990), no. 3, 487-494. https://doi.org/10.1017/S0004972700018360
- E. Schippers, Distortion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3241-3249. https://doi.org/10.1090/S0002-9939-00-05623-9
- H. Tamanoi, Higher Schwarzian operators and combinatorics of the Schwarzian derivative, Math. Ann. 305 (1996), no. 1, 127-151. https://doi.org/10.1007/BF01444214
Cited by
- Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes vol.10, pp.8, 2018, https://doi.org/10.3390/sym10080348