DOI QR코드

DOI QR Code

Investigation on the Growth of Tungsten Carbide Layer as a Buffer for GaN-on-Si Technology

GaN-on-Si 기술을 위한 탄화텅스텐 버퍼층의 성장에 관한 연구

  • Cho, Sungmin (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • Choi, Junghoon (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Choi, Sungkuk (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Cho, Youngji (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Lee, Seokhawn (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • Chang, Jiho (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University)
  • 조성민 (한국해양대학교 해양과학기술융합학과) ;
  • 최정훈 (한국해양대학교 전자소재공학전공) ;
  • 최성국 (한국해양대학교 전자소재공학전공) ;
  • 조영지 (한국해양대학교 전자소재공학전공) ;
  • 이석환 (한국해양대학교 해양과학기술융합학과) ;
  • 장지호 (한국해양대학교 해양과학기술융합학과)
  • Received : 2016.03.28
  • Accepted : 2016.10.26
  • Published : 2017.01.01

Abstract

Tungsten carbide (WC) has been suggested as a new buffer layer for the GaN-on-Si technology. We have investigated and optimized the sputtering condition of WC layer on the Si-substrate. We confirmed the suppression of the Si melt-back phenomenon. In addition, surface energy of WC/Si layer was measured to confirm the possibility as a buffer layer for GaN growth. We found that the surface energy(${\gamma}=82.46mJ/cm^2$) of WC layer is very similar to that of sapphire substrate(${\gamma}=82.71mJ/cm^2$). We grow GaN layer on the WC buffer by using gas-source MBE, and confirm that it is available to grow a single crystalline GaN layer.

Keywords

References

  1. M. Wright, Bridgelux hits 160 lm/W in lab with LEDs produced using GaN on silicon, http://www.ledsmagazine.com/articles/2011/08/bridgelux-hits-160-lm-w-in-lab-with-ledsproduced-using-gan-on-silicon.html (2011).
  2. H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, J. Cryst. Growth, 189, 172 (1998).
  3. S. Alexey and A. I. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals (Springer Science & Business Media, Las Vegas, 2013) p. 1-25.
  4. K. A. Beadle, R. Gupta, A. Mathew, J. G. Chen, and B. G. Willis, Thin. Solid. Films, 516, 3847 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.06.170]
  5. L.C.A. Morimitsu, J.D.L. Roche, D. Escobar, R. Ospina, and E. R. Parra, Ceram. Int., 39, 7355 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2013.02.075]
  6. P. D. Rack, J. J. Peterson, J. Li, A. C. Geiculescu, and H. J. Rack, J. Vac. Sci. Technol. A, 19, 62 (2001). [DOI: https://doi.org/10.1116/1.1335684]
  7. S. K. Choi, J. Y. Yoo, S. H. Jung, W. B. Chang, and J. H. Chang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 446 (2013).
  8. K. A. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology (2nd ed.) (William Andrew, New York, 2008) p. 64-67.
  9. A. S. Kurlov and A. I. Gusev, Inorg. Mater+, 42, 156 (2006). [DOI: https://doi.org/10.1134/S0020168506020051]
  10. A. Strittmatter, S. Rodt, L. ReiBmann, D. Bimberg, H. Schroder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, Appl. Phys. Lett., 78, 727 (2001). [DOI : https://doi.org/10.1063/1.1347013]
  11. S. H. Jang, S. S. Lee, O. Y. Lee, and C. R. Lee, J. Cryst. Growth, 255, 220 (2003). [DOI: https://doi.org/10.1016/S0022-0248(03)01251-X]