Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.1.1

Investigation on the Growth of Tungsten Carbide Layer as a Buffer for GaN-on-Si Technology  

Cho, Sungmin (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University)
Choi, Junghoon (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Choi, Sungkuk (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Cho, Youngji (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Lee, Seokhawn (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University)
Chang, Jiho (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.1, 2017 , pp. 1-6 More about this Journal
Abstract
Tungsten carbide (WC) has been suggested as a new buffer layer for the GaN-on-Si technology. We have investigated and optimized the sputtering condition of WC layer on the Si-substrate. We confirmed the suppression of the Si melt-back phenomenon. In addition, surface energy of WC/Si layer was measured to confirm the possibility as a buffer layer for GaN growth. We found that the surface energy(${\gamma}=82.46mJ/cm^2$) of WC layer is very similar to that of sapphire substrate(${\gamma}=82.71mJ/cm^2$). We grow GaN layer on the WC buffer by using gas-source MBE, and confirm that it is available to grow a single crystalline GaN layer.
Keywords
GaN-on-Si; Tungsten carbide; Sputter; Buffer layer; Surface energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Wright, Bridgelux hits 160 lm/W in lab with LEDs produced using GaN on silicon, http://www.ledsmagazine.com/articles/2011/08/bridgelux-hits-160-lm-w-in-lab-with-ledsproduced-using-gan-on-silicon.html (2011).
2 H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, J. Cryst. Growth, 189, 172 (1998).
3 S. Alexey and A. I. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals (Springer Science & Business Media, Las Vegas, 2013) p. 1-25.
4 K. A. Beadle, R. Gupta, A. Mathew, J. G. Chen, and B. G. Willis, Thin. Solid. Films, 516, 3847 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.06.170]   DOI
5 L.C.A. Morimitsu, J.D.L. Roche, D. Escobar, R. Ospina, and E. R. Parra, Ceram. Int., 39, 7355 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2013.02.075]   DOI
6 P. D. Rack, J. J. Peterson, J. Li, A. C. Geiculescu, and H. J. Rack, J. Vac. Sci. Technol. A, 19, 62 (2001). [DOI: https://doi.org/10.1116/1.1335684]   DOI
7 S. K. Choi, J. Y. Yoo, S. H. Jung, W. B. Chang, and J. H. Chang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 446 (2013).
8 K. A. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology (2nd ed.) (William Andrew, New York, 2008) p. 64-67.
9 A. S. Kurlov and A. I. Gusev, Inorg. Mater+, 42, 156 (2006). [DOI: https://doi.org/10.1134/S0020168506020051]
10 A. Strittmatter, S. Rodt, L. ReiBmann, D. Bimberg, H. Schroder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, Appl. Phys. Lett., 78, 727 (2001). [DOI : https://doi.org/10.1063/1.1347013]   DOI
11 S. H. Jang, S. S. Lee, O. Y. Lee, and C. R. Lee, J. Cryst. Growth, 255, 220 (2003). [DOI: https://doi.org/10.1016/S0022-0248(03)01251-X]   DOI