DOI QR코드

DOI QR Code

Effect of mixing of suckling piglets on change of body surface temperature in sows and piglets

포유자돈의 합사가 모돈과 자돈의 체표면 온도 변화에 미치는 영향

  • Kim, Doo-Wan (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Young-Hwa (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Kwang-Sik (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Ki-Hyun (National Institute of Animal Science, Rural Development Administration)
  • 김두완 (농촌진흥청 국립축산과학원) ;
  • 김영화 (농촌진흥청 국립축산과학원) ;
  • 김광식 (농촌진흥청 국립축산과학원) ;
  • 김기현 (농촌진흥청 국립축산과학원)
  • Received : 2016.11.11
  • Accepted : 2017.01.06
  • Published : 2017.01.31

Abstract

This study was conducted to investigate the effects of mixing with unfamiliar piglets on changes in the body surface temperature of sows and piglets during the suckling period. A total of 123 pigs (12 sows and 111 piglets) were used for this study. A control group of piglets of the same litter was maintained in the farrowing pen and compared to a treatment group of piglets of three different litters mixed by removing the partition in the farrowing pen. In the treatment group, mixing of piglets was performed at 10:00 a.m. on day 11 after parturition, and the body surface temperature of sows and piglets was taken using a thermo-graphic camera at 30 minutes after mixing. In the case of sows, the average surface temperature of the treatment group ($37.1^{\circ}C$) was significantly higher than that of the control ($36.3^{\circ}C$; p<0.05); however, the hot spot temperatures did not differ significantly between groups. In contrast, the average surface temperature of piglets was significantly decreased by mixing (37.5 and $36.0^{\circ}C$ in the control and treatment, respectively; p<0.01). Moreover, the hot spot temperature tended to be lower in the treatment ($39.1^{\circ}C$) than the control ($39.4^{\circ}C$), although there was no significant difference (p=0.079). These results suggest that mixing of unfamiliar piglets during the suckling period leads to changes in the body surface temperature of sows and piglets. In the future, the correlation between body surface temperature and body core temperature should be analyzed, and additional studies investigating the effects of mixing on the physiological changes in sows and piglets are required.

본 연구는 포유기간 중 이복자돈과의 합사가 모돈과 자돈의 체표면 온도 변화에 미치는 영향을 조사하기 위하여 실시하였다. 임신모돈 12두를 공시하여 6두는 개별 분만펜에 위치시켜 분만 후 이유시까지 복당 사육을 유지하였으며(대조구), 6두는 중간 칸막이의 제거가 가능한 가변형 분만펜에서 3복이 한 펜이 되도록 분만 11일차에 칸막이를 제거하여 이유시까지 유지하였다(처리구). 합사 30분 후에 열화상카메라를 이용하여 모돈 및 자돈의 체표면 온도를 측정하였다. 분만 후 포유모돈의 평균 체표면 온도는 처리구에서 $37.1^{\circ}C$로 대조구의 $36.3^{\circ}C$보다 유의적으로 높은 것으로 나타났고 (p<0.05), 최고온도에서는 두 처리간 유의적인 차이가 없었다. 이와 대조적으로, 포유 자돈의 평균 체표면 온도는 포유기 합사에 의해 유의적으로 감소하였으며(대조구 37.5, 처리구 $36.0^{\circ}C$; p<0.01). 최고온도에서 또한 대조구와 처리구에서 각각 $39.4^{\circ}C$$39.1^{\circ}C$로 유의적인 차이는 아니지만 대조구에서 낮은 경향으로 관찰되었다(p=0.079). 결론적으로 포유기간 중에 이복자돈과의 합사에 의해 모돈의 체표면 온도는 상승되지만, 자돈의 체표면 온도는 감소하는 것으로 관찰되었다. 더 나아가 체표면 온도와 심부온도와의 상관관계를 구명하고, 합사에 의한 모돈 및 자돈의 생리적 변화에 대한 연구가 필요할 것으로 사료된다.

Keywords

References

  1. J. M. Campbell, J. D. Crenshaw, J. Polo, The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol., 4, 19-22. 2013. DOI: https://doi.org/10.1186/2049-1891-4-19
  2. H. C. Hu, K. Xiao, J. Song, Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinase in pigs. J. Anim. Sci., 91, 1094-1101. 2013. DOI: https://doi.org/10.2527/jas.2012-5796
  3. Y. L. Yin, Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radical Res., 47, 1027-1035. 2013. DOI: https://doi.org/10.3109/10715762.2013.848277
  4. G. B. Tactacan, S. Y. Cho, J. H. Cho, I. H. Kim, Performance responses, nutrient digestibility, blood characteristics, and measures of gastrointestinal health in weanling pigs fed protease enzyme. Asian-Australas. J. Anim. Sci., 29, 998-1003. 2016. DOI: https://doi.org/10.5713/ajas.15.0886
  5. I. C. De Jong, E. Lambooij, S. M. Korte, H. J. Blokhuis, J. M. Koolhaas, Mixing induces long-term hyperthermia in growing pigs. Anim. Sci., 69, 601-605. 1999. https://doi.org/10.1017/S1357729800051456
  6. R. C. Sulabo, E. J. Wiedemann, J. Y. Jacela, M. D. Tokach, J. L. Nelssen, J. M. De Rouchey, R. D. Goodband, S. S. Dritz, Effect of varying creep feeding duration on proportion of pigs consuming creep feed and pre-weaning performace. Swine Day, Kansas State University, Manhattan, KS, Conference paper, 38-45. 2007.
  7. E. Hillman, F. von Hollen, B. Bunger, D. Todt, L. Schrader, Farrowing conditions affect the reactions of piglets towards novel environment and social confrontation at weaning. Appl. Anim. Behav. Sci., 81, 99-109. 2003. DOI: https://doi.org/10.1016/S0168-1591(02)00254-X
  8. D. M. Weary, E. A. Pajor, M. Bonenfant, D. Fraser, D. L. Kramer, Alterative housing for sows and litters. Part 4. Effect of sow-controlled housing combined with a communal piglet area on pre- and post-weaning behavior and performance. Appl. Anim. Behav. Sci., 76, 279-290. 2002. DOI: https://doi.org/10.1016/S0168-1591(02)00011-4
  9. R. B. D'Eath, Socialising piglets before weaning improves social hierarchy formation when pigs are mixed post-weaning. Appl. Anim. Behav. Sci., 93, 199-211. 2005. DOI: https://doi.org/10.1016/j.applanim.2004.11.019
  10. H. H. Yang, W. G. Min, Y. H. Bae, Design and implementation of a radio telemetry system to monitor the deep body temperature of broilers. J. Korea Acad. Industr. Coop. Soc., 9, 81-86, 2008. DOI: https://doi.org/10.5762/KAIS.2008.9.1.081
  11. D. D. Soerensen, L. J. Pedersen, Infrared skin temperature measurements for monitoring health in pig: a review. Acta Vet. Scand., 57(5), 1-11. 2015. DOI: https://doi.org/10.1186/s13028-015-0094-2
  12. S. H. Lee, A study on digital convergence related with our life using ICT. J. Digit. Converg., 11, 429-434. 2013. DOI: https://doi.org/10.14400/JDPM.2013.11.11.429
  13. D. W. Lee, S. H. Lee, The future of ICT fusions based on smart technology. J. Digit. Converg., 10, 147-152. 2012.
  14. K. S. Kang, Production of content for regional sources of the convergence industrialization. Based on agricultural management entities of the sixth industrialization in Chungcheongnam-do. J. Digit. Converg., 13, 483-490. 2015. DOI: https://doi.org/10.14400/JDC.2015.13.10.483
  15. B. C. Kim, The ICT convergence agriculture automated machines designed for smart agriculture. J. Digit. Converg., 14, 141-148. 2016. DOI: https://doi.org/10.14400/JDC.2016.14.2.141
  16. I. G. Kim, S. H. Kang, Accuracy analysis of pulse wave sensor data of ear lable of husbandry livestock. J. Digit. Converg., 12, 387-393. 2014. DOI: https://doi.org/10.14400/JDC.2014.12.11.387
  17. L. Pedersen, J. M. Studnitz, K. H. Jensen, A. M. Giersing, Suckling behavior of piglets in relation to accessibility to the sow and the presence of foreign litters. Appl. Anim. Behav. Sci., 58, 267-279. 1998. DOI: https://doi.org/10.1016/S0168-1591(97)00149-4
  18. V. T. Kanaan, E. A. Pajor, D. C. Lay Jr, B. T. Richert, J. P. Garner, A note on the effect of co-mingling piglet litters on pre-weaning growth, injuries and responses to behavioural tests. Appl. Anim. Behav. Sci., 110, 386-391. 2008. DOI: https://doi.org/10.1016/j.applanim.2007.05.002
  19. P. K. Theil, C. Lauridsen, H. Quesnel, Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal, 8, 1021-1030. 2014. DOI: https://doi.org/10.1017/S1751731114000950
  20. L. Olson, S. Faulkner, K. Lundstromer, A. Kerenyi, D. Kelen, M. Chandrasekaran, U. Aden, L. Olson, X. Golay, H. Lagercrantz, N. J. Robertson, D. Galter, Comparison of three hypothermic target temperatures for the treatment of hypoxic ischemia: mRNA level responses of eight genes in the piglet brain. Transl. Stroke. Res., 4, 248-257. 2013. DOI: https://doi.org/10.1007/s12975-012-0215-4
  21. P. S. Yan, S. Yamamoto, Relationship between thermoregulatory responses and heat loss in piglets. J. Anim. Sci., 71, 505-509. 2000.
  22. T. M. Brown-Brand, R. A. Eigengerg, J. A. Nienaber, S. D. Kachman, Thermoregulatory profile of a newer genetic line of pigs. Livest. Prod. Sci., 71, 253-260. 2001. DOI: https://doi.org/10.1016/S0301-6226(01)00184-1
  23. E. K. Worobec, I. J. H. Duncan, T. M. Widowsky, The effect of weaning at 7, 14 and 28 days on piglets behavior. Appl. Anim. Behav. Sci., 62, 173-182. 1999. DOI: https://doi.org/10.1016/S0168-1591(98)00225-1
  24. L. N. Cox, J. J. Coopert, Observations on the pre- and post-weaning behavior of piglets reared in commercial outdoor and indoor environments. Br. Soc. Anim. Sci., 72, 75-86. 2001. DOI: https://doi.org/10.1017/S1357729800055570
  25. L. Melotti, M. Oostindjer, J. E. Bolhuis, S. Held, M. Mendl, Coping personality type and environmental enrichment affect aggression at weaning in pigs. Appl. Anim. Behav. Sci., 133, 144-153. 2001. DOI: https://doi.org/10.1016/j.applanim.2011.05.018
  26. K. S. Kim, E. S. Cho, Y. H. Kim, J. E. Kim, K. H. Seol, K. H. Kim, Effect of mixing with non-familiar piglets on change of body temperature. Korean J. Agri. Sci., 42, 231-235. 2015. DOI: https://doi.org/10.7744/cnujas.2015.42.3.231