DOI QR코드

DOI QR Code

Fabrication of Multi-Layered Graphenes/P(S-co-BA) Nanocomposite via Sudden Heating Heterocoagulation Process

  • Choi, JinKyu (Department of Chemistry & Chemical Engineering, Inha University) ;
  • Lee, Eun-Kyoung (Department of Biomedical Science, Cheongju University) ;
  • Shim, Sang Eun (Department of Chemistry & Chemical Engineering, Inha University)
  • Received : 2017.11.03
  • Accepted : 2017.11.24
  • Published : 2017.12.31

Abstract

The heterocoagulation of latex is a simple and useful method to fabricate various polymer nanocomposites in which a precise control of the colloid stability is essential. In this work, a multi-layered graphenes (MLGs)/poly(styrene-co-butyl acrylate) (P(S-co-BA)) nanocomposite having an excellent dispersion of MLGs was prepared via the sudden heating heterocoagulation process. The P(S-co-BA) component was obtained by emulsion polymerization. This process can effectively shorten the process and particles growth steps. The colloid stability of these dispersions was controlled by factors such as ionic charge, temperature, and reaction times. The influence of these factors on heterocoagulation was evaluated and the properties of the nanocomposites were investigated. The conductivity of the MLGs/P(S-co-BA) nanocomposites increased from -11.53 to -5.70 S/cm for an increase in MLG content from 0.01 to 5 wt%. Moreover, percolation threshold was observed in the case of 0.01 wt% MLGs.

Keywords

References

  1. E. Tombacz, C. Csanaky, and E. Illes, "Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence", Colloid Polym. Sci., 279, 484 (2001). https://doi.org/10.1007/s003960100480
  2. B. Vincent, C. A. Young, and T. F. Tadros, "Equilibrium aspects of heteroflocculation in mixed sterically-stabilised dispersions", Faraday Discuss. Chem. Soc., 65, 296 (1978). https://doi.org/10.1039/dc9786500296
  3. T. Serizawa, K. Taniguchi, and M. Akashi, "Hetero-coagulation of polymeric core-corona microspheres", Colloids Surf. A, 169, 95 (2000). https://doi.org/10.1016/S0927-7757(00)00421-0
  4. K. Maruyama, M. Kawaguchi, and T. Kato, "Heterocoagulation behavior of poly(styrene-co-butadiene) and poly(butyl acrylate) at high particle concentrations", Colloids Surf. A, 189, 211 (2001). https://doi.org/10.1016/S0927-7757(01)00473-3
  5. W. B. Russel, D. A. Saville, and W. R. Schowalter, "Colloidal dispersions", Cambridge University Press, Cambridge, 1992, Chapter 1, pp. 4-20.
  6. R. J. Hunter, "Introduction to modern colloid science", Oxford University, Sydney, 1994, pp. 35-45.
  7. K. Yamaguchi, M. Ito, T. Taniguchi, S. Kawaguchi, and K. Nagai, "Preparation of functional core-shell particles by heterocoagulation", Chem. Lett., 31, 1188 (2002). https://doi.org/10.1246/cl.2002.1188
  8. K. Yamaguchi, M. Ito, T. Taniguchi, S. Kawaguchi, and K. Nagai, "Preparation of core-shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction", Colloid Polym. Sci., 282, 366 (2004). https://doi.org/10.1007/s00396-003-0948-4
  9. J. A. Waters, "Composite particle dispersions", European Patent 0327199 (1990).
  10. D. J. Voorn, W. Ming, A. M. van Herk, P. M. Frederik, P. Gasemjit, and D. Johanssmann, "Controlled heterocoagulation of platelets and spheres", Langmuir, 21, 6950 (2005). https://doi.org/10.1021/la050605e
  11. A. K. Geim, K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  12. S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube", Nature, 393, 49 (1998). https://doi.org/10.1038/29954
  13. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic circuits with carbon nanotube transistors", Science, 294, 1317 (2001). https://doi.org/10.1126/science.1065824
  14. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, 287, 1801 (2000). https://doi.org/10.1126/science.287.5459.1801
  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  16. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  17. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeithler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, "Room-temperature quantum Hall effect in graphene", Science, 315, 1379 (2007). https://doi.org/10.1126/science.1137201
  18. H. B. Heersche, H. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, "Bipolar supercurrent in graphene", Nature, 446, 56 (2007). https://doi.org/10.1038/nature05555
  19. B. Ozyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, "Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions", Phy. Rev. Lett., 99, 166804 (2007). https://doi.org/10.1103/PhysRevLett.99.166804
  20. J. R. Williams, L. DiCarlo, and C. M. Marcus, "Quantum Hall effect in a gate-controlled pn junction of graphene", Science, 317, 638 (2007). https://doi.org/10.1126/science.1144657
  21. K. Kim, H. J. Park, B. C. Woo, K. J. Kim, G. T. Kim, and W. S. Yun, "Electric property evolution of structurally defected multilayer graphene", Nano Lett., 10, 3092 (2008).
  22. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets", Nat. Nanotechnol., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  23. C. M. Valerie, S. S. Micheal, H. H. Erik, H. H. Robert, and E. S. Richard, "Individually suspended single-walled carbon nanotubes in various surfactants", Nano Lett., 3, 1379 (2003). https://doi.org/10.1021/nl034524j
  24. R. Richa, K. Rahul, S.K. Tripathi, S. Amit, K. Inderpreet, and M. B. Lalit, "Comparative study of carbon nanotube dispersion using surfactants", J. Colloid Interface Sci., 328, 421 (2008). https://doi.org/10.1016/j.jcis.2008.09.015
  25. M. A. Kader, K. Kim, Y.-S. Lee, and C. Nah, "Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending", J. Mater Sci., 41, 7341 (2006). https://doi.org/10.1007/s10853-006-0792-2
  26. X. Liu, Z. Niu, H. Xu, M. Guo, and Z. Yang, "Crosslinkable composite spheres and capsules synthesized by heterocoagulation", Macromol. Rapid Commun., 26, 1002 (2005). https://doi.org/10.1002/marc.200500128
  27. J. Grunlan, A. R. Mehrabi, M. V. Bannon, and J. L. Bahr, "Water-Based Single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold", Adv. Mater., 16, 150 (2004). https://doi.org/10.1002/adma.200305409
  28. T. Wang, C. H. Lei, A. B. Dalton, C. C. Creton, Y. Lin, K. A. S. Fernando, Y. P. Sun, J. M. Manea, and J. L. Keddie, "Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity", Adv Mater., 18, 2730 (2006). https://doi.org/10.1002/adma.200601335
  29. O. Regev, P. N. B. Elkati, J. Loos, and C. E. Koning, "Preparation of conductive nanotube-polymer composites using latex technology", Adv. Mater., 16, 248 (2004). https://doi.org/10.1002/adma.200305728
  30. J. C. Grunlan, Y. S. Kim, S. Ziaee, X. Wei, B. Abdel-Magid, and K. Tao, "Thermal and Mechanical Behavior of Carbon-Nanotube-Filled Latex", Macromol. Mater. Eng., 291, 1035 (2006). https://doi.org/10.1002/mame.200600191
  31. S. Hong, J. Hong, D. Jung, and S. E. Shim, "Colloidal poly (styrene-co-butyl acrylate)/multi-walled carbon nanotubes nanocomposite by heterocoagulation in aqueous media", Polymer, 50, 3652 (2009). https://doi.org/10.1016/j.polymer.2009.05.060
  32. A. Mdarhri, F. Carmona, C. Brosseau, and P. Delhaes, "Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites", J. Appl. Phys., 103, 054303 (2008). https://doi.org/10.1063/1.2841461
  33. N. Grossiord, J. Loos, and C. E. Koning, "Strategies for dispersing carbon nanotubes in highly viscous polymers", J. Mater. Chem., 15, 2349 (2005). https://doi.org/10.1039/b501805f