• Title/Summary/Keyword: percolation threshold

Search Result 79, Processing Time 0.029 seconds

A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles

  • Pan, Zichao;Wang, Dalei;Ma, Rujin;Chen, Airong
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.551-561
    • /
    • 2018
  • The percolation of interfacial transition zone (ITZ) in cementitious materials is of great importance to the transport properties and durability issues. This paper presents numerical simulation research on the ITZ percolation threshold of mortar specimens at meso-scale. To simulate the meso-scale model of mortar as realistically as possible, the aggregates are simplified as ellipsoids with arbitrary orientations. Major and minor aspect ratios are defined to represent the global shape characteristics of aggregates. Some algorithms such as the burning algorithm, Dijkstra's algorithm and Connected-Component Labeling (CCL) algorithm are adopted for identification of connected ITZ clusters and percolation detection. The effects of gradation and aspect ratios of aggregates on ITZ percolation threshold are quantitatively studied. The results show that (1) the ITZ percolation threshold is mainly affected by the specific surface area (SSA) of aggregates and shows a global decreasing tendency with an increasing SSA; (2) elongated ellipsoidal particles can effectively bridge isolated ITZ clusters and thus lower the ITZ percolation threshold; (3) as ITZ volume fraction increases, the bridging effect of elongated particles will be less significant, and has only a minor effect on ITZ percolation threshold; (4) it is the ITZ connectivity that is essentially responsible for ITZ percolation threshold, while other factors such as SSA and ITZ volume fraction are only the superficial reasons.

Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold (Carbon Black-Polyethylene복합재료의 Percolation Threshold 전후 저항율에 미치는 온도의 영향)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.644-648
    • /
    • 2009
  • Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.

Electrical Conduction Property of the Carbon Black-Filled Polyethylene Matrix Composites Below the Percolation Threshold (문턱스며들기 이하 카본블랙 충진 폴리에칠렌기지 복합재료의 전기전도 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper two aspects of the percolation and conductivity of carbon black-filled polyethylene matrix composites will be discussed. Firstly, the percolation behavior, the critical exponent of conductivity of these composites, are discussed based on studying the whole change of resistivity, the relationship between frequency and relative permittivity or ac conductivity. There are two transitions of resistivity for carbon black filling. Below the first transition, resistivity shows an ohmic behavior and its value is almost the same as that of the matrix. Between the first and second transition, the change in resistivity is very sharp, and a non-ohmic electric field dependence of current has been observed. Secondly, the electrical conduction property of the carbon black-filled polyethylene matrix composites below the percolation threshold is discussed with the hopping conduction model. This study investigates the electrical conduction property of the composites below the percolation threshold based on the frequency dependence of conductivity in the range of 20 Hz to 1 MHz. There are two components for the observed ac loss current. One is independent of frequency that becomes prevalent in low frequencies just below the percolation threshold and under a high electrical field. The other is proportional to the frequency of the applied ac voltage in high frequencies and its origin is not clear. These results support the conclusion that the electrical conduction mechanism below the percolation threshold is tunneling.

Dielectric Properties of Carbon Black-Filled Polyethylene Matrix Composites (카본블랙 충진 Polyethylene Matrix Composites의 유전 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.196-201
    • /
    • 2011
  • It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.

Change of Percolation Threshold in Carbon Powder-Filled Polystyrene Matrix Composites

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2015
  • This paper investigates the change of the percolation threshold in the carbon powder-filled polystyrene matrix composites based on the experimental results of changes in the resistivity and relative permittivity of the carbon powder filling, the electric field dependence of the current, and the critical exponent of conductivity. In this research, the percolation behavior, the critical exponent of resistivity, and electrical conduction mechanism of the carbon powder-filled polystyrene matrix composites are discussed based on a study of the overall change in the resistivity. It was found that the formation of infinite clusters is interrupted by a tunneling gap in the volume fraction of the carbon powder filling, where the change in the resistivity is extremely large. In addition, it was found that the critical exponent of conductivity for the universal law of conductivity is satisfied if the percolation threshold is estimated at the volume fraction of carbon powder where non-ohmic current behavior becomes ohmic. It was considered that the mechanism for changing the gaps between the carbon powder aggregates into ohmic contacts is identical to that of the connecting conducting phases above the percolation threshold in a random resister network system. The electric field dependence is discussed with a tunneling mechanism. It is concluded that the percolation threshold should be defined at this volume fraction (the second transition of resistivity for the carbon powder-filled polystyrene matrix composites) of carbon powder.

Prediction of Percolation Threshold for Electrical Conductivity of CNT-Reinforced Cement Paste (CNT 보강 시멘트 페이스트의 전기전도에 관한 침투임계점 예측)

  • Lee, Seon Yeol;Kim, Dong Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.235-242
    • /
    • 2022
  • The percolation threshold of the CNT-reinforced cement paste is closely related to the optimal CNT amount to maximize the sensing ability of self-sensing concrete. However, the percolation threshold has various values depending on the cement, CNT, and water-to-cement ratio used. In this study, a percolation simulation model was proposed to predict the percolation threshold of the CNT-reinforced cement paste. The proposed model can simulate the percolation according to the amount of CNT using only the properties of CNT and cement, and for this, the concept of the number of aggregated CNT particles was used. The percolation simulation consists of forming a pre-hydrated cement paste model, random dispersion of CNTs, and percolation investigation. The simulation used CNT-reinforced cement paste with a water-cement ratio of 0.4 to 0.6, and the simulated percolation threshold point showed high accuracy with a simulation residual ratio of up to 7.5 % compared to the literature results.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

Characterization of fracture network with geometrical properties

  • 지성훈;박영진;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.106-109
    • /
    • 2002
  • In order to delineate the flow system of fractured hard rock aquifer, numerical experiments are conducted and the results are analyzed with Mote Carlo simulation. The results show that the percolation threshold and the effective conductivity of a fracture network can be estimated with power law exponent (a) and fracture intensity. But the dependability of the estimated value relies on the percolation threshold, the system scale, and the characterization level.

  • PDF

Electrical Properties of Conductive Copper Filler/Epoxy Resin Composites (전도성 구리충전제/에폭시수지 복합체의 전기적 특성)

  • Lee, Jung-Eun;Park, Young-Hee;Oh, Seung-Min;Lim, Duk-Jum;Oh, Dae-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • The conductive polymer composites recently became increasingly to many fields of industry due to their electrical properties. To understand these properties of composites, electrical properties were measured and were studied relatively. Electrical conductivity measurements showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in composites made of a conductive filler and an insulating matrix. It has been showed both experimentally and theoretically that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. This paper was to study epoxy resin filled with copper. The experiment was made with vehicle such as epoxy resin replenished with copper powder and the study about their practical use was performed in order to apply to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 3.065~13.325 in using copper powder. The weight loss of conductive composites happened from $350^{\circ}C{\sim}470^{\circ}C$.