Browse > Article
http://dx.doi.org/10.7473/EC.2017.52.4.272

Fabrication of Multi-Layered Graphenes/P(S-co-BA) Nanocomposite via Sudden Heating Heterocoagulation Process  

Choi, JinKyu (Department of Chemistry & Chemical Engineering, Inha University)
Lee, Eun-Kyoung (Department of Biomedical Science, Cheongju University)
Shim, Sang Eun (Department of Chemistry & Chemical Engineering, Inha University)
Publication Information
Elastomers and Composites / v.52, no.4, 2017 , pp. 272-279 More about this Journal
Abstract
The heterocoagulation of latex is a simple and useful method to fabricate various polymer nanocomposites in which a precise control of the colloid stability is essential. In this work, a multi-layered graphenes (MLGs)/poly(styrene-co-butyl acrylate) (P(S-co-BA)) nanocomposite having an excellent dispersion of MLGs was prepared via the sudden heating heterocoagulation process. The P(S-co-BA) component was obtained by emulsion polymerization. This process can effectively shorten the process and particles growth steps. The colloid stability of these dispersions was controlled by factors such as ionic charge, temperature, and reaction times. The influence of these factors on heterocoagulation was evaluated and the properties of the nanocomposites were investigated. The conductivity of the MLGs/P(S-co-BA) nanocomposites increased from -11.53 to -5.70 S/cm for an increase in MLG content from 0.01 to 5 wt%. Moreover, percolation threshold was observed in the case of 0.01 wt% MLGs.
Keywords
multi-layered graphene; latex; sudden heating heterocoagulation process; percolation threshold; electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. Williams, L. DiCarlo, and C. M. Marcus, "Quantum Hall effect in a gate-controlled pn junction of graphene", Science, 317, 638 (2007).   DOI
2 K. Kim, H. J. Park, B. C. Woo, K. J. Kim, G. T. Kim, and W. S. Yun, "Electric property evolution of structurally defected multilayer graphene", Nano Lett., 10, 3092 (2008).
3 D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets", Nat. Nanotechnol., 3, 101 (2008).   DOI
4 C. M. Valerie, S. S. Micheal, H. H. Erik, H. H. Robert, and E. S. Richard, "Individually suspended single-walled carbon nanotubes in various surfactants", Nano Lett., 3, 1379 (2003).   DOI
5 R. Richa, K. Rahul, S.K. Tripathi, S. Amit, K. Inderpreet, and M. B. Lalit, "Comparative study of carbon nanotube dispersion using surfactants", J. Colloid Interface Sci., 328, 421 (2008).   DOI
6 M. A. Kader, K. Kim, Y.-S. Lee, and C. Nah, "Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending", J. Mater Sci., 41, 7341 (2006).   DOI
7 X. Liu, Z. Niu, H. Xu, M. Guo, and Z. Yang, "Crosslinkable composite spheres and capsules synthesized by heterocoagulation", Macromol. Rapid Commun., 26, 1002 (2005).   DOI
8 J. Grunlan, A. R. Mehrabi, M. V. Bannon, and J. L. Bahr, "Water-Based Single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold", Adv. Mater., 16, 150 (2004).   DOI
9 T. Wang, C. H. Lei, A. B. Dalton, C. C. Creton, Y. Lin, K. A. S. Fernando, Y. P. Sun, J. M. Manea, and J. L. Keddie, "Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity", Adv Mater., 18, 2730 (2006).   DOI
10 O. Regev, P. N. B. Elkati, J. Loos, and C. E. Koning, "Preparation of conductive nanotube-polymer composites using latex technology", Adv. Mater., 16, 248 (2004).   DOI
11 J. C. Grunlan, Y. S. Kim, S. Ziaee, X. Wei, B. Abdel-Magid, and K. Tao, "Thermal and Mechanical Behavior of Carbon-Nanotube-Filled Latex", Macromol. Mater. Eng., 291, 1035 (2006).   DOI
12 S. Hong, J. Hong, D. Jung, and S. E. Shim, "Colloidal poly (styrene-co-butyl acrylate)/multi-walled carbon nanotubes nanocomposite by heterocoagulation in aqueous media", Polymer, 50, 3652 (2009).   DOI
13 A. Mdarhri, F. Carmona, C. Brosseau, and P. Delhaes, "Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites", J. Appl. Phys., 103, 054303 (2008).   DOI
14 R. J. Hunter, "Introduction to modern colloid science", Oxford University, Sydney, 1994, pp. 35-45.
15 N. Grossiord, J. Loos, and C. E. Koning, "Strategies for dispersing carbon nanotubes in highly viscous polymers", J. Mater. Chem., 15, 2349 (2005).   DOI
16 E. Tombacz, C. Csanaky, and E. Illes, "Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence", Colloid Polym. Sci., 279, 484 (2001).   DOI
17 B. Vincent, C. A. Young, and T. F. Tadros, "Equilibrium aspects of heteroflocculation in mixed sterically-stabilised dispersions", Faraday Discuss. Chem. Soc., 65, 296 (1978).   DOI
18 T. Serizawa, K. Taniguchi, and M. Akashi, "Hetero-coagulation of polymeric core-corona microspheres", Colloids Surf. A, 169, 95 (2000).   DOI
19 K. Maruyama, M. Kawaguchi, and T. Kato, "Heterocoagulation behavior of poly(styrene-co-butadiene) and poly(butyl acrylate) at high particle concentrations", Colloids Surf. A, 189, 211 (2001).   DOI
20 W. B. Russel, D. A. Saville, and W. R. Schowalter, "Colloidal dispersions", Cambridge University Press, Cambridge, 1992, Chapter 1, pp. 4-20.
21 K. Yamaguchi, M. Ito, T. Taniguchi, S. Kawaguchi, and K. Nagai, "Preparation of functional core-shell particles by heterocoagulation", Chem. Lett., 31, 1188 (2002).   DOI
22 K. Yamaguchi, M. Ito, T. Taniguchi, S. Kawaguchi, and K. Nagai, "Preparation of core-shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction", Colloid Polym. Sci., 282, 366 (2004).   DOI
23 J. A. Waters, "Composite particle dispersions", European Patent 0327199 (1990).
24 A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic circuits with carbon nanotube transistors", Science, 294, 1317 (2001).   DOI
25 D. J. Voorn, W. Ming, A. M. van Herk, P. M. Frederik, P. Gasemjit, and D. Johanssmann, "Controlled heterocoagulation of platelets and spheres", Langmuir, 21, 6950 (2005).   DOI
26 A. K. Geim, K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007).   DOI
27 S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube", Nature, 393, 49 (1998).   DOI
28 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, 287, 1801 (2000).   DOI
29 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature, 438, 201 (2005).   DOI
30 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004).   DOI
31 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeithler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, "Room-temperature quantum Hall effect in graphene", Science, 315, 1379 (2007).   DOI
32 H. B. Heersche, H. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, "Bipolar supercurrent in graphene", Nature, 446, 56 (2007).   DOI
33 B. Ozyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, "Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions", Phy. Rev. Lett., 99, 166804 (2007).   DOI